

Генеральная Ассамблея

Distr. GENERAL

A/44/87/Add.3 13 June 1989 RUSSIAN ORIGINAL: ENGLISH

Сорок четвертая сессия Пункт 63а первоначального перечня*

ВСЕОБЩЕЕ И ПОЛНОЕ РАЗОРУЖЕНИЕ

Уведомление о ядерных испытаниях

Записка Генерального секретаря

Добавление

В соответствии с резолюциями 41/59 N от 3 декабря 1986 года и 42/38 С от 30 ноября 1987 года были получены сообщения Австралии и Новой Зеландии от 5 и 31 мая 1989 года, которые воспроизводятся в приложении к настоящей записке.

^{*} A/44/50/Rev.1.

ПРИЛОЖЕНИЕ

Информация, представленная государствами

АВСТРАЛИЯ

[Подлинный текст на английском языке] [5 мая 1989 года]

- 1. Имею честь сослаться на резолюцию 42/38 С Генеральной Ассамблеи, озаглавленную "Уведомление о ядерных испытаниях", в пункте 3 которой содержится просьба к государствам, которые сами не проводят ядерных взрывов, но располагают информацией о таких фактах, предоставлять такие данные Генеральному секретарю.
- 2. В соответствии с этой просьбой имею честь препроводить подробные данные об обнаруженных Австралией ядерных взрывах, проведенных в период с октября по декабрь 1988 года (см. добавление I), а также объяснительную записку (добавление II).

ДОБАВЛЕНИЕ І <u>Ежеквартальный доклад о предполагаемых подземных ядерных взрывах</u> (октябрь-декабрь 1988 года)

		Единое время (ч.м.)	Место	Предполагаемая	Предполага- емая мощность в килотоннах	Поряд- ковый номер
Месяц				амплитуда		
1988 год	Число		проведения	объемной волны		
Октябрь	13	1400	Невада	5,9	40-150	88/26
Октябрь	18	0340	Восточный Казахстан	4,9	0-10	88/27
Октябрь	25	1700	Муруроа	4,2*	0-10	88/28
Ноябрь	5	1830	Муруроа	5,4	40	88/29
Ноябрь	12	0330	Восточный Казахстан	5,2	10-40	88/30
Ноябрь	23	0357	Восточный Казахстан	5,3	10-40	88/31
Ноябрь	23	1701	Муруроа	5,4	20-80	88/32
Ноябрь	30	1755	Фангатауфа	5,5	20-80	88/33
Декабрь	4	0520	Новая Земля	5,9	40-150	88/34
Декабрь	10	2030	Невада	5,0	10-40	88/35
Декабрь	17	0418	Восточный Казахстан	5,9	20-80	88/36
Декабрь	28	0528	Восточный Казажстан		0-10	88/37

Примечания:

* Амплитуда рассчитана исключительно на основе сейсмических данных новозеландских сейсмостанций.

Информация, содержащаяся в настоящей таблице, была получена от австралийских сейсмологических учреждений и учреждений других стран, сотрудничающих в области наблюдения за землетрясениями и проведением ядерных взрывов.

Если в таблице не содержится иных указаний, то предполагаемая амплитуда объемной волны представляет собой показатель, который публикуется Национальным центром информации Соединенных Штатов о землетрясениях и основывается на данных об амплитуде, получаемых сейсмическими станциями всего мира, включая Австралию.

Мощность взрывов рассчитана с применением уравнений, полученных эмпирическим путем; никакой согласованной формулы определения мощности взрывов не существует.

Показатели мощности взрывов, рассчитанные с применением этих уравнений, недостаточно точны для того, чтобы использовать их при решении вопроса о соблюдении международных договоров.

ДОБАВЛЕНИЕ II

Объяснительная записка

При проведении подземного взрыва ядерного устройства сейсмические волны распространяются во всех направлениях. В целях установления факта проведения подземного ядерного взрыва, определения его места, а также размера или мощности взрыва сейсмологи принимают меры по обнаружению и анализу нескольких различных видов сейсмических волн, образуемых в результате взрыва. Многие факторы влияют на силу и четкость указанных сейсмических волн, особенно на степень эффективности, с которой взрыв передает энергию окружающей толще земли. Эта эффективность в свою очередь зависит от местных геологических условий, таких, как плотность и влагосодержание скальных пород, окружающих место взрыва. Важное значение имеет также информация о пути прохождения сейсмических сигналов через земную толщу.

Наличие международной сети сейсмических станций значительно повысило бы уверенность в возможности обнаружения и установления места проведения любых подземных ядерных взрывов. Австралия принимает активное участие в международных усилиях, направленных на создание такой сети, и, кроме того, установила двустороннее сотрудничество в области сейсмологии. По оценкам экспертов, наличие международной сейсмической сети позволит с уверенностью выявлять взрывы, проводимые без сейсмической маскировки, мощностью примерно до 5 килотонн, и возможно даже до одной килотонны; ниже этого предела уже труднее отличить ядерные взрывы от землетрясений и других сейсмических шумов и для решения этой задачи могут понадобиться дополнительные меры.

Особенно трудной является оценка мощности подземного взрыва с помощью дистанционных средств сейсмического контроля на основе имеющихся данных. Соотношение между сейсмическими сигналами и мощностью взрыва не является постоянным, а зависит от ряда геологических и других неизвестных факторов. В настоящее время мы не имеем свободного доступа к значительной и достоверной базе данных о взрывах известной мощности в различных местах и геологических условиях, которая позволила бы определить это соотношение с максимальной точностью. Именно поэтому в примечаниях к таблицам в настоящем докладе подчеркивается, что данные о предполагаемых мощностях взрывов не являются в достаточной степени надежными для установления факта соблюдения международных договоров. В настоящее время все эти вопросы активно рассматриваются на международных форумах.

новая зеландия

[Подлинный текст на английском языке] [31 мая 1989 года]

- 1. Имею честь сослаться на резолюцию 42/38 С, принятую Генеральной Ассамблеей 30 ноября 1987 года и озаглавленную "Уведомление о ядерных испытаниях", в пункте 3 которой содержится просьба к государствам, которые сами не проводят ядерных взрывов, но располагают информацией о таких фактах, предоставлять такие данные Генеральному секретарю.
- 2. В соответствии с этой просьбой имею честь препроводить в добавлении подробные данные о ядерных взрывах, проведенных Францией в южной части Тихого океана в течение 1988 года. Испытания проводились на атолле Муруроа и, вероятно, впервые с 1975 года на атолле Фангатауфа. Оценки мощности каждого взрыва основываются на гидроакустических сигналах, зарегистрированных сейсмической обсерваторией Новой Зеландии в Раротонге, острова Кука.

ДОБАВЛЕНИЕ

Информация о ядерных взрывах на атолле Муруроа, 1988 год

Географические координаты:

21⁰ 50' южной широты 138⁰ 55' западной долготы

Дата	Время суток (стандартное, Новая Зеландия)	Предполагаемая мощность (в килотоннах)
12 мая	05 ч. 00 м.	20
26 мая	05 ч. 01 м.	80
17 июня	05 ч. 15 м.	5
24 июня	05 ч. 31 м.	30
26 октября	05 ч. 00 м.	1
6 ноября	04 ч. 30 м.	50
24 ноября	05 ч. 01 м.	40

<u>Данные о ядерных взрывах на атолле Фангатауфа,</u> <u>1988 год</u>

Географические координаты:

22⁰ 15' южной широты 138⁰ 45' западной долготы Время суток (стандартное, Дата Новая Зеландия) Предполагаемая мощность (в килотоннах)

1 декабря

05 ч. 55 м.

100

Геологическая структура атолла Муруроа

Следующее описание взято из "Доклада научной миссии Новой Зеландии, Австралии и Папуа-Новой Гвинеи на атолл Муруроа" (Министерство иностранных дел Новой Зеландии, Веллингтон, 1984 год, глава 2.1.2.2.):

"2.1.2.2. Геологическое образование Муруроа

Структура атолла Муруроа была описана на основе базы данных, которая включает подробные исследования аэромагнитных и сейсмических отражений и преломлений, подкрепленные подтверждающими данными, полученными в результате бурения 200-300 мелких и глубоких скважин. Кроме того, использовались результаты подробных и точных батиметрических исследований склонов атолла. Некоторые из этих данных опубликованы, однако значительная часть из них не опубликована: с любой точки зрения, база данных, которая используется французами для описания структуры Муруроа, является впечатляющей. Из всех коралловых атоллов, которые имеются в Мировом океане, Муруроа, несомненно, самый изученный. Ниже приводится краткое описание, составленное на основе всех имеющихся в наличии достоверных источников.

Профиль сейсмического преломления и отражения указывает на то, что подповерхностная структура Муруроа может быть разделена на пять частей, со следующими средними скоростями:

Рифовые карбонаты		2,2	км s ⁻¹
Надповерхностные вулканические породы		3,8	км s-1
Подводные вулканические породы		3,68	км s ⁻¹
Глубоководные вулканические породы		4,5	${\rm KM~s^{-1}}$
Покровные вулканические породы	5,27 -	5,6	км s ⁻¹

Вся рифообразующая структура поднимается с глубин свыше 3000 м, причем с южной стороны крутизна склонов составляет 12-40° на уровне свыше 1000 м, в отличие от склонов северной стороны, крутизна которых местами достигает 66° ... Аэромагнитные исследования указывают на три положительные линейные структуры, которые тянутся с запада на восток через северную, центральную и южную части атолла; эти структуры, вероятно, представляют собой края глубинного разлома или рифтовых зон. Сейсмические исследования говорят о наличии жерла вулкана в центре атолла под лагуной, вытянутого в северо-западном — юго-восточном направлении. Крыша вулканических образований глубже всего на севере, а в южной части она ближе к поверхности и более неровная. Эти данные подтверждаются результатами бурения скважин.

пересекающих вулканические структуры на глубине 430-450 м на севере и 300 м на юге. Под лагуной крыша вулканических структур находится на глубине 180-200 м, и для нее характерны ровные покатые склоны $(1-2^0)$ в направлении океана.

Вулканические образования, опускающиеся до глубин примерно в 1600 м, состоят из двух соседних структур: глубоководных вулканических образований и приповерхностных субаэральных вулканических образований. Считается, что глубоководные вулканические образования более однородны, чем субаэральные вулканические образования. Глубоководные вулканические образования определяются как автокластиты и гиалокластиты, т.е. подводные породы, расколотые и разломанные в результате быстрого охлаждения в морской воде. Разломы наиболее интенсивны в гиалокластитах. На всем протяжении встречаются дайки различной толщины.

Эта стратиграфическая база данных была недавно значительно расширена благодаря работе Даниэль Бигю (1982 год) по изучению пяти скважин, пробуренных на южном и северном крае и в лагуне. В исследованиях доктора Бигю документирована эволюция рифа, в ходе которой вслед за окаймляющими/барьерными рифами возникает поднятие и, наконец, атолл. Эволюция происходит на основе постепенно затухающей вулканической активности и зависит от изменения уровня мирового океана. Периоды прилива и роста рифов сменяются периодами отлива, в ходе которого происходит выветривание и разрушение рифов. Доломитизация нижней части структуры была вызвана климатическими изменениями в период отлива. Важно также то, что, как установила д-р Бигю, значительные последствия имеет карстовая эрозия, т.е. появление мегапористости. На основе ранее опубликованных данных Реппелина и Тришера (1975 год) о пористости выдвигались предположения о различной пористости известняков. Бигю не только подтвердила эти предположения, но и указала на то, что зоны мегапористости возникают в результате субаэрального выветривания обнажившихся известняков. При этом возможно появление пещерных систем. Она установила, что подобные карстовые явления возникают в скважинах на глубине ниже 330 м, на глубине 280-290 м, 230-260 м, 120-150 м и около 90 метров".

Ссылки:

Buigues, D. <u>Sedimentation et diagénèse des formations carbonates de l'Atoll de Mururoa (Polynésie française</u>). Thése docteur 3ème cycle, Université de Paris-sud, Centre d'orsay, 1982, 2 Vol., 309 p.

Reppelin, P. and Trichet J. <u>Un example de diagénèse de carbonates recifaux</u> (Atoll de Mururoa, Polynésie française), IX Congrès international de sedimentologie, Nice, 1975, Theme 7, 179-186 p.

Геологическая структура атолла фангатауфа

По предположению новозеландских властей, геологическая структура атолла Фангатауфа подобна геологической структуре атолла Муруроа вследствие их сходного геологического происхождения. Однако геологическая структура Фангатауфы еще не описана в литературе.

Глубина испытаний

Достоверные данные о глубине каждого испытательного ядерного взрыва не предоставляются французскими властями. В ноябре 1987 года занимавший в то время должность государственного секретаря Франции по проблемам южной части Тихого океана г-н Гастон Флосс указывал на глубины проведения испытаний под лагуной, составлявшие от 500 до 700 метров. По заявлению г-на Флосса, по мере удаления места бурения шахт от внешней стены атолла их глубина уменьшалась по сравнению с глубиной предыдущих шахт.

В докладе Фонда Кусто за 1988 год (доклад Фонда Кусто, озаглавленный "Научная миссия "Калипсо" на месте проведения ядерных испытаний на Муруроа" и опубликованный Фолдом Кусто в ноябре 1988 года в Париже, стр. 16) утверждается, что испытания проводятся под лагуной на глубине 800-1000 метров.