Distr.: General 6 January 2011 Russian Original: English ## Европейская экономическая комиссия Комитет по внутреннему транспорту ## Рабочая группа по перевозкам опасных грузов Совместное совещание Комиссии экспертов МПОГ и Рабочей группы по перевозкам опасных грузов Берн, 21-25 марта 2011 года Пункт 5 b) предварительной повестки дня Предложения о внесении поправок в МПОГ/ДОПОГ/ВОПОГ: новые предложения # Аэрозоли (№ ООН 1950) — максимальное внутреннее давление при 50 °C Передано Федерацией европейских ассоциаций производителей аэрозолей $(\Phi EA)^{1,\,2}$ Резюме Существо предложения: Поправки к положению о максимальном внут- реннем давлении при 50 °C для аэрозолей. Предлагаемое решение: Внести изменения в нынешний текст пунк- та 6.2.6.1.5 МПОГ/ДОПОГ. Справочные документы: - ² Распространен Межправительственной организацией по международным железнодорожным перевозкам (ОТИФ) в качестве документа OTIF/RID/RC/2011/21. ¹ В соответствии с программой работы Комитета по внутреннему транспорту на 2010–2014 годы (ECE/TRANS/208, пункт 106; ECE/TRANS/2010/8, подпрограмма 02.7 c)). ## Введение - 1. С целью избежать путаницы ФЕА хотела бы подчеркнуть, что настоящий документ не имеет отношения к документу ФЕА "Aerosols (UN 1950) Maximum volume of the liquid phase at 50 °C" (Аэрозоли (№ ООН 1950) максимальный объем жидкой фазы при 50 °C) (ST/SG/AC.10/C. 3/2010/44). - 2. ФЕА предложила Европейской комиссии адаптировать директиву 75/324/EEC, касающуюся аэрозольных распылителей (ADD), к техническому прогрессу. - 3. ФЕА довела эту информацию до сведения Подкомитета экспертов Организации Объединенных Наций по перевозке опасных грузов (неофициальный документ INF.19, представленный на тридцать седьмой сессии Подкомитета). Предложение ФЕА, направленное Европейской комиссии, приводится в приложении к настоящему документу. - 4. Группа экспертов по директиве ADD в составе экспертов Европейской комиссии и государств членов Европейского союза на своем совещании, состоявшемся 4 ноября 2010 года, приняла решение включить увеличенное значение максимального внутреннего давления при 50 °C, равное 15 бар, для аэрозольных распылителей с невоспламеняющимися газами-вытеснителями в следующий вариант директивы ADD, адаптированный к техническому прогрессу. - 5. Как было объявлено, ФЕА готова рассмотреть этот вопрос в рамках правил, охватывающих различные виды транспорта, но по практическим соображениям эти законодательные процедуры не могут осуществляться полностью параллельно. - 6. В рамках пункта 6.2.6.1.5 ФЕА предлагает изменить только требования к аэрозолям (№ ООН 1950), оставив без изменений требования к малым емкостям, содержащим газ (газовым баллончикам) (№ ООН 2037). ## Предложение 7. Ниже представлены поправки к положению о максимальном внутреннем давлении при $50\,^{\circ}\text{C}$ для аэрозолей, содержащемуся в пункте $6.2.6.1.5\,$ МПОГ/ДОПОГ; они выделены жирным курсивом: "Внутреннее давление при 50 °C в малых емкостях, содержащих газ (газовых баллончиках) (№ ООН 2037), не должно превышать двух третей испытательного давления или 1,32 МПа (13,2 бар). Аэрозольные распылителы и Малые емкости, содержащие газ (газовые баллончики), должны наполняться таким образом, чтобы при 50 °C жидкая фаза не превышала 95% их вместимости. Внутреннее давление при 50 °C в аэрозольных распылителях (№ ООН 1950) не должно превышать двух третей испытательного давления или 1,20 МПа (12,0 бар). Однако, если аэрозоль не содержит легковоспламеняющийся газ и смесь легковоспламеняющихся газов, внутреннее давление при 50 °C не должно превышать двух третей испытательного давления или 1,50 МПа (15,0 бар). Аэрозольные распылители должны наполняться таким образом, чтобы при 50 °C жидкая фаза не превышала 95% их вместимости.". **2** GE.11-20125 # Обоснование 8. См. приложение. GE.11-20125 3 ## Приложение [English only] ## Increase in maximum allowable internal pressure at 50 °C FEA returns to its initial proposal: increase the maximum internal pressure at 50 °C for aerosols using non-flammable propellants from the currently allowed 13.2 bar to 15 bar. The same level of safety as required by the current Directive obviously must be maintained, i.e. a factor of 1.5 to reach the minimum deformation pressure and 1.8 to minimum burst pressure. This point was already discussed within the Member States' Experts Committee during the last comitology procedure. Some Member States' experts asked for additional information to support this increase of the allowable pressure and as a result the pressure of 13.2 bar was agreed as an interim measure in line with ADR. Please find below the supporting information. #### Introduction The aerosol industry constantly strives to increase the environmental compatibility of aerosol products and to design these products and their handling in a permanently sustainable manner. For this purpose using non-flammable compressed gas propellants, which may be a conceivable option for certain products given the premise that the spray efficiency is maintained, calls for an increase in the maximum internal pressure at 50 °C. Tests have shown that, where compressed gases are used as propellants, an increase to 15 bar at $50\,^{\circ}\text{C}$ can lead to good results for the efficacy and performance of some products. The following considerations, which serve to guarantee safety, apply to all aerosol containers. Here it should be noted that compressed gases have more favourable pressure increase characteristics than liquefied propellants, so that the burst hazard is significantly lower in the case of compressed gases. 4 GE.11-20125 | Temperature (°C) | Nitrogen
12 bar @
50°C (bar) | Propane/
Butane
37:63% (bar) | Propane/
Butane
54:46% (bar) | CO2 in
Emulsion
(bar) | Nitrogen
15 bar@
50°C (bar) | |------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------|-----------------------------------| | 20 | 10.8 | 3.6 | 5.2 | 7.8 | 13.5 | | 30 | 11.2 | 5.2 | 7.0 | 9.3 | 14.0 | | 40 | 11.6 | 7.1 | 9.2 | 10.7 | 14.5 | | 50 | 12.0 | 9.0 | 12.0 | 12.0 | 15.0 | | 60 | 12.4 | 11.5 | 15.2 | 13.0 | 15.5 | | 70 | 12.8 | 14.7 | 19.2 | 14.1 | 16.0 | ### Aerosol Container and Valve Manufacture During the aerosol container and valve manufacturing process the various production steps as well as finished containers and valves are subjected to numerous inspections. Current legislation allows aerosol containers pressurised at 13.2 bar at 50 °C if they contain non-flammable propellants. The proposed pressure increase (of approx. 13.6 %) to 15 bar is now technically feasible and the safety of the containers so pressurised can be reliably ensured. The relevant requirements are fully met by the quality systems that are already in place at all levels of the aerosol industry. This has been confirmed by tests performed on appropriate aerosol containers. The valve, the container, and the container/valve assembly will be adapted in design and performance to suit the higher pressure level and will thus be safe. #### Aerosol Valves Material and design of cups (valves), crimp and clinch for "15 bar" applications have to be chosen, so that tightness compared to 13.2 bar applications is ensured. In preparation, verifying tests to demonstrate compliance with the following parameters have been established: • The valve cups for 15 bar applications have to be pressure resistant at the adjusted pressure compared to the pressure resistance of 'standard' cups for 13.2 bar applications (i.e. minimum 27.0°bar pressure resistance instead of 23.76 bar). The movement of the cup boss under the defined pressure is a feature for evaluation of cups/valves. #### Aerosol Containers Both aluminium and tinplate aerosol containers have already been manufactured in "15.0 bar at 50°C" versions. Such containers have been tested successfully both in internal test series during the aerosol container manufacturing process by container manufacturers and in external tests, using tests designed to check that: - The containers develop no visible deformation when subjected to a load (deformation pressure) of 22.5 bar during 25 seconds, - The containers resist a pressure of at least up to 27.0 bar without bursting. GE.11-20125 5 The required pressure resistance was obtained by adapting the material thickness in the container geometry, thus meeting the demand for increased deformation and burst pressure levels. The following table provides an overview of the various pressure levels and rating values that are valid at the various points of the process (aerosol container-makers, fillers): | Maximum internal pressure at | Test pressure | Bursting pressure | |------------------------------|--------------------|--------------------| | 50°C (as defined by ADD | (as defined by ADD | (as defined by ADD | | 75/324/EEC) | 75/324/EEC) | 75/324/EEC) | | (bar) | (bar) | (bar) | | 10 | 15 | 18 | | 12 | 18 | 21.6 | | 13.2a | 19.8 | 23.76 | | 15b | 22.5 | 27 | ^a Only for aerosols using non-flammable propellants. #### Aerosol Container Filling Process Aerosol containers are filled under the most stringent safety conditions. The filling equipment used in the industry today can be adapted without difficulty to suit the slightly higher pressure level. As is the current practice, safety devices will be used to prevent overfilled containers from being brought into circulation. Clinch dimensions are adapted at present – and will be adapted in future – to each specific container type and its appropriate valve. The safety of the aerosol container/valve assembly will be guaranteed by a 100 % water bath test or an alternative test method. Other tests with aerosols pressurised to 15 bar at $50\,^{\circ}$ C have demonstrated that such aerosols can be produced without showing any visible permanent distortion or leakage. All other tests required by the Aerosol Dispensers Directive 75/324/EEC that are designed to guarantee the mechanical strength and chemical compatibility of aerosol packages have, of course, also to be performed. Empty aerosol containers and filled aerosol dispensers have been tested to demonstrate that safe 15 bar at 50°C applications are technically feasible. FEA proposes that the wording of the Annex to ADD should be amended as follows (in *bold italics*): #### 3.1.2. Filling At 50 °C, the pressure in the aerosol dispenser must not exceed 12 bar. However, if the aerosol does not contain a gas or mixture of gases having a flammable range with air at 20 $^{\circ}$ C and a standard pressure of 1,013 bar, the maximum allowable pressure at 50 $^{\circ}$ C is 15 bar. Identical requirements should apply to plastic aerosols in the same way. **6** GE.11-20125 b Proposed change, only for aerosols using non-flammable propellants.