
GE.02-30524

 Distr.
 GENERAL

 CES/SEM.47/19
 21 February 2002

 ENGLISH ONLY

STATISTICAL COMMISSION and COMMISSION OF THE
ECONOMIC COMMISSION FOR EUROPE EUROPEAN COMMUNITIES

CONFERENCE OF EUROPEAN STATISTICIANS EUROSTAT

Joint UNECE/Eurostat Seminar on Integrated Statistical
Information Systems and Related Matters (ISIS 2002)
(17-19 April 2002, Geneva, Switzerland)

Topic III: Object-oriented technologies, component architecture

SEMANTIC INTEROPERABILITY: TALES FROM A TECHNOLOGY-LIBERATED WORLD

Invited paper

Submitted by Eurostat 1

Abstract: This paper presents a survey of technology used to support component-based development, namely
middleware, application servers and application integration brokers. It analyses the problems associated with
such component hosting platforms and assesses the adequateness of current technology in the light of new
requirements for software application interoperability over wide-area networks like the Internet. It presents
an approach for software interoperability where components base their interactions on the semantics of the
business they support. It describes how such semantic interoperability approach is applied in the context of
the STATOBJECT IST project.

I. INTRODUCTION

1. Object-orientation is presently considered as the mainstream approach in modern software
construction activities. Reuse as well as the smooth integration of objects and software components are some
of the key arguments in favour of object-oriented technologies. Object-oriented technologies are the natural
choice in the case of IT projects aiming at developing new software systems. However, it is for new systems
to be created from scratch. Usually, IT projects are bound by various constraints related to integration with
heterogeneous hardware, including mainframe systems, as well as existing software applications that are not
using object-oriented technology. Giving that context, and taking into account the large spectrum of software
technologies available today, it is not very realistic to expect software solutions that are "purely" based on
object-oriented technologies.

2. Application Integration and Middleware technologies developed over the last five years make an
important step towards interoperability of software technologies. Mainly backing component-based
development, such technologies can be seen as the software layer that hosts application components and

1 Prepared by Denis Avrilionis (denis@darcedge.com).

CES/SEM.47/19
page 2

ensures a certain quality of service during execution of these components. The success of such component
hosting platforms has created a new category of software that did not exist in a general-purpose,
commercially available form prior to 1996. Companies selling their products under the "Enterprise
Application Integration", "Business Process Management", "Application Server", "Integration Broker" or
"Middleware" banners have evolved from niche players to important market makers that can rival the big
traditional software vendors like IBM, SUN, or Oracle. Giving that this segment of the market is young and
still under consolidation, it is difficult and often risky to make technological decisions on the basis of the
results of the latest market research studies.

3. This paper supports the idea that current component hosting platforms are too complex to suit the
evolving needs of component-based development. In the last few years we have observed a shift from
enterprise-wide software solutions, to software solutions that suit the needs of individual knowledge workers.
As this tendency is increasingly confirmed in the field, component hosting platforms must shift their focus
from technical integration solutions to solutions that enable business people to interact using high level
concepts, close to the ones used in their day-to-day business. Based on the assumption that the technology is
there to serve as a solution to a well defined problem, we argue that the key for improving reuse and
interoperability of software as well as to building scalable and easily extended software architectures is not
technology per se, but a thorough knowledge of the problem to be solved. In other words, putting the focus
on the content and the semantics of the information can lead to a better application of object-oriented
technology and interoperability between software components and systems. Shifting the focus from
technology to the semantics of the information manipulated by an application makes it possible to produce
better quality software. This is the approach we have adopted in the context of the STATOBJECT project.

4. Section II of this paper sets the vocabulary of terms often used to describe component-based software
engineering. Section III presents a taxonomy of the various technological alternatives available today for
hosting software components, namely middleware, application servers, and integration brokers. Section IV
presents the problems associated with today's component hosting platforms and identifies some key issues to
watch when adopting such technologies. Section V gives our view on the reasons of the complexity of
current component hosting platforms. Section VI presents some of the new requirements that component
hosting platforms would have to cover in the near future. Sections VII and VIII present the approach we are
adopting for component-based development in the context of the STATOBJECT project. Section IX draws
some conclusions.

II. COMPONENT-BASED DEVELOPMENT

II.1 The Theory

5. Component-based development is based on the idea that software can be created through the
assembly of run-time functionality by integrating both custom developed and commercial off-the-shelf
(COTS) modules. The original motivation of the approach is that re-use of preexisting Components would
ease and accelerate software development effort. In addition to ``run-time'' components, Patterns and
Frameworks are promoting reuse at the level of software design and specification. Patterns are simple
abstract solutions to common design problems. The solution they express is language and implementation
independent, and usually applies across many different types of application. Frameworks are (often quite
large) sets of co-operating classes or components that make up a design for a specific class of application.
Using frameworks often implies that most of the design is complete at a high level and developers need to
“fill the details”.

 CES/SEM.47/19
 page 3

II.2 The Practice

6. Although the theoretical benefits of component-based development make the approach promising,
both the development methodology as well as the technology needed to deliver this vision is still incomplete.
The component communication standards or architectures (for example, COM, Corba, Enterprise Java
Beans) exist, but achieving maximum re-use requires the standardisation process to extend further into
middleware and application integration functionality than is the case at present. Practically, the whole process
of architecting, designing, building and deploying component-based software solutions can be reinforced by
the capabilities offered or, hindered by the constraints imposed, by the underlying component hosting
platform. By Component Hosting Platform we refer to the software layer that is responsible for developing
and run the components. Choosing the correct component hosting platform that fits the needs of a particular
problem is the hidden complexity, and often the high price to pay, when adopting component-based
development approaches. Below we give a quick overview of the different types of component hosting
platforms that are currently available in the market.

III. COMPONENT HOSTING PLATFORMS

7. Component hosting platforms have been built for the last 10 years in order to support enterprise
computing environments. Coping with enterprise requirements means that the platform would host
components that model a core part of the business, and that business operation would not be able to run
effectively without it. Such platforms are deployed for long enough and they must be able to deal with
significant changes in the business without major impact in the services they are offering to the rest of the
software infrastructure. They must be able to support a large number of users as well as a high transaction
throughput, or both. Component hosting platforms are central to the effective operation of the business in
which they are deployed. To do this they must be able to interact with pre-existing systems and databases,
which also fulfill business-critical functions. They must also be robust and reliable. Moreover, with the
advent of the Internet, component hosting platforms must be able to cope with widely varying loads, while
maintaining an acceptable performance profile, and they must be secure. They must be able to allow or
disallow components to access certain parts of the infrastructure (e.g. databases with confidential
information). They also must facilitate administration and deployment of components and applications, for
local and remote locations.

8. As far as the core services are concerned, although the technology is rather heterogeneous, the
following list of services is usually covered by the majority of component hosting platforms currently
available in the market:

• Naming/directory. A directory is a database, or set of reference files, which contains all the
information needed by the component hosting platform to operate at run-time.

• Memory management/life -cycle. A memory management service supplements those provided by
the operating system, and is aimed at making better use of available memory, freeing memory when
it is no longer needed, allocating and re-allocating blocks of memory as processes change.

• Multi-threading/multi-tasking. Where many requests are made for a single component, the
component execution platform can handle the situation by queuing the requests, or by using multi-
threading or multi-tasking.

• Load balancing. Load balancing bears some similarity to multi-tasking. The service balances the
request load by creating duplicate processes to perform a requested service, but these duplicated
processes are on different machines.

• Finder. The purpose of a finder service is to provide a way for a client to locate a specific
component instance without already having a reference to it.

CES/SEM.47/19
page 4

• Security. Security services usually implement three extremely important functions: authentication,
authorization, and encryption

• Persistence. Business components represent managed elements of a corporate data model. Therefore,
component hosting platforms usually provide a facility for transferring components from the main
memory of a computer system to secondary storage, and vice versa, to allow components life-spans
to exceed the length of time that the computer is switched on, and to ensure a degree of reliability in
the case of system failure.

• Transaction processing. A component hosting platform often provides a transaction processing
service to enable distributed business components that store their data on heterogeneous Database
Management Systems and machines to change their state consistently and reliably.

9. Since the technology evolves in a rapid pace and new standards and architectures are emerging, it is
quite difficult to define a taxonomy of the technology used to build component hosting platforms. Below we
distinguish three types of platforms, namely middleware, application servers, and application integration
brokers. This typology is more based on the three generations of component hosting platforms that emerged
the last five years. However, it should be noticed that all three types provide similar functionality, but often
rely on heterogeneous technology. As the technology evolves it is highly probable to see a consolidation of
the architectures towards a general purpose component hosting environment for the enterprise.

III.1 Middleware

10. Middleware products have emerged as the software layer supporting leading-edge users of
technology to build sophisticated distributed applications. In many cases, these applications have been
implemented to support relatively extreme requirements, for instance airline booking systems or
telecommunications billing systems. Today, middleware is the technology most companies are using in
implementing IT solutions that must integrate wide ranges of distributed, heterogeneous resources.
Middleware is the fundamental tool when it comes to dealing with integration issues. Middleware products
are now equally likely to be embedded within other products or solutions, rather than be used stand-alone,
however, understanding which business benefits they offer (and how they offer them) is critical to large
companies and organisations.

11. Given the diversity of middleware products available in the market today it is hard to build a generic
model describing component hosting platforms based on middleware technology. The picture below gives a
high-level view of the common architecture blocks that can be found in most middleware products of the
market. As shown in the picture, components that rely on middleware hosting platform usually do not have to
deal with low-level data/object transport issues. Components also can use various application programming
interfaces in order to deal with common distributed computing problems like load balancing, distributed
transactions, authentication, and authorisation, etc.

 CES/SEM.47/19
 page 5

12. Among the different middleware paradigms Object Request Broker middleware are message-oriented
middleware are the most popular ones.

III.1.1 ORBs

13. Although the ORB acronym is often used as a synonymous to Object Management Group's (OMG)
Common Object Request Broker Architecture (CORBA) specification, an Object Request Broker (ORB) is a
broader architectural paradigm than CORBA and has been implemented by various products over different
operating systems. Although OMG's CORBA ORB offers the most technologically neutral architecture,
Microsoft's DCOM as well as Java's RMI can be though as some kind of object request brokers supporting
communication between objects. The ORB communication paradigm relies on a communication between a
client and a server object through the use of local copies (proxies) of remote objects that reside on the address
space of the client object. Clients locate server objects at runtime and then build local proxies of server
objects. It is the proxy that communicates with the server. An Interface Description Language (IDL) is
usually used to describe the structure of the data exchanged between objects in a language -independent
manner.

14. ORB-based middleware often define a set of value-added services implemented on top of the basic
object communication mechanism provided by the ORB. These services cover a broad range of distributed
computing problems. CORBA's common services is a representative list of such ORB-based value-added
services (e.g. naming, life cycle, transaction, persistence, event, trade, etc.1). As the market is evolving, Java
enterprise specifications (Enterprise Java Beans, Java Transaction Service, Java Naming and Directory
Interface) are relying on OMG's CORBA specification. Moreover, CORBA specification version 3 and late
Java Enterprise Specifications are converging to a common architecture paradigm for software components.

III.1.2 Message-oriented middleware (MOM)

15. The MOM paradigm is based on the principle whereby applications run in different operating system
processes communicate with each other by passing messages over the network. Messages contain control and
application data. Control data is used by the component hosting platform. The component hosting platform is
agnostic of the nature of the application data. Application data may be an arbitrarily long sequence of bytes

CES/SEM.47/19
page 6

that contains data such as arrays, video images, simple data structures, images or sound. There are generally
few restrictions imposed on either the length of the data sent, or the type of data. Unlike the Interface
Description Language (IDL) used as a way to describe the content of messages in the case of ORB, MOM
middleware treats application data as an opaque block of information that is passed to the application
components.

16. MOM is used in high performance and availability environments where the quantity of information
to deliver is quite important (e.g. trading rooms receiving on line stock quotes from the stock markets). In the
last few years MOM products are progressively include guaranteed delivery, transaction facilities, as well as
security in their platforms.

III.2 Application Servers

17. Application servers became very popular as component hosting platforms for web-facing
applications. In a more broad sense, application servers provide the runtime infrastructure and development
services necessary to deploy applications or components in a multi-tiered architecture supporting web and
other client interfaces.

18. The application server market has been created by the strong demand for transactional and secure
web-facing architectures during the early dot-com era. Giving such a broad area of functionality, vendors in
the area of Database management systems, enterprise middleware, or client-server development frameworks
have enlarged their product offering to cover this new market opportunity. Consequently, application server
products that are currently available in the market are reflecting the initial orientation of the vendor and thus
have different strengths and weaknesses.

19. Application servers are built for a specific purpose, i.e. to provide easy-to-program transaction-
processing environments for web-based and other thin-client applications. Using an application-server
hosting platform often implies strong requirements in multi-user server-based transactional applications. The
figure below shows the main architectural blocks of an application server hosting platform. Although
transactional processing was one of the primary requirements in developing application servers, presently,
almost all applications servers available in the market are complete component hosting platforms providing
extensive capabilities for distributed computing, integrating middleware technology, as well as various
connectivity links with data store mechanisms and custom enterprise applications.

 CES/SEM.47/19
 page 7

III.3 Application Integration Brokers

20. Enterprise Application Integration (EAI) technology combines a set of technologies that help
automate the integration of custom-built and/or packaged business applications, so that they interact
seamlessly, and exchange business-level information in formats and contexts that each understands. EAI
solutions are not always single products. In fact, they often comprise many products, each of which focuses
on automating a particular aspect of integration, or a particular type of integration problem. Such products
lines, often marketed as ``Enterprise Application Integration Brokers'' make initial implementations of
integration solutions quick and easy to carry out by automating many steps of the integration effort.

21. In many ways, the client-server revolution set the stage for the coming of EAI. Before the rise in
popularity of packaged enterprise applications and of departmental LAN computing, IT departments of many
large organisations attempted to create a corporate data model that would be used to solve this difficulty.
Such initiatives were rarely successful, because the complexity associated with creating, verifying and tuning
such models meant that, by the time the modelling group had completed its effort, the rest of the IT
organisation had created more systems to accommodate changing business needs. With the introduction of
LANs, the client-server technology revolution and the attendant shift of responsibility for IT spending (from
central IT to departmental lines of business), even the few successful projects ended up be ing irrelevant. The
result is that in all but the most opportunistic, short-lived integration projects, the hand-crafted approach to
integration yields solutions that are too costly, complex and fragile. In addition, given that many integration
projects that start out as temporary solutions often stay in use far longer than the team's original expectations.
Enterprise Integration Brokers made a successful entry into the software market by introducing a structured
component-based approach for enterprise integration.

22. The figure below gives a high-level model of the most common architectural blocks of current EAI
brokers of the market. Most often such products propose connectivity with a wide variety of data storage
mechanisms ranging from databases to files containing proprietary data formats. Components that are hosted

CES/SEM.47/19
page 8

by such platforms aim at transforming data entities from one format to another (e.g. positional records to
XML, relational database records to proprietary message formats, etc.). In addition, higher level components
are describing the process flow between enterprise applications.

IV. DO CURRENT COMPONENT HOSTING PLATFORMS FIT THE NEED OF

COMPONENT-BASED DEVELOPMENT?

23. The benefits of component-based development have been put forward for many years and come in
pair with the wide adoption of Object-oriented technology. Object-oriented technologies are the natural
choice in case of IT projects aiming at developing new software systems. Component-based development is a
valuable approach for new systems to be created from scratch. Unfortunately, creating systems from scratch
is an ideal situation that becomes rare in the present global economic slowdown. Commonly, IT projects are
bound by various constraints related to integration with heterogeneous hardware, including mainframe
systems, as well as existing software applications that are not using object-oriented technology. Giving that
context, and taking into account the large spectrum of software technologies available today, it is not very
realistic to expect software solutions that are "purely" based on object-oriented technologies. However,
giving the heterogeneity and the distributed nature of today's software applications, it is highly probable that
some sort of middleware, application server or integration broker technology would be required. The
adoption of such a component hosting platform requires a lot of attention, since it is a critical factor of
success (or failure!) of an IT project.

24. Many companies used to build their own middleware rather than using an off-the-shelf solution.
Some of them are still unaware of the existence of component hosting platforms, some are unaware of their
capabilit ies and some think they can do better than the software vendors. Unfortunately, the main added
value of component hosting platforms is to remove the complexity associated with the development of
component connectivity services. There is also a large group of companies where responsibility for building
an application is entirely left to developers with no teams to provide infrastructure software or tools. In this
case purchases of component hosting platform come from a project budget, which often forces the project
leader to choose what he or she perceives to be the cheapest option. Unfortunately, developers often appear
to be cheaper than component hosting platforms. This can be a route to disaster. The development of in-
house middleware, application server, or integration brokers is a significant burden on an organisation,

 CES/SEM.47/19
 page 9

requiring specialised and costly skills. There are examples of IT departments where over half the staff have
ended up supporting connectivity services developed in-house. Some recent figures have placed the estimate
of the cost to support in-house middleware at 70% of some companies IT budgets.

25. The evolution of the needs and the market offering the last five years have been a great catalysts in
making the broader IT community aware of the benefits of component-based software construction. As
presented in the previous section, a whole catalogue of component-based hosting platforms and their
associated development approaches are now available in the market. However, early reports from the
industry reveal an alarming view on component-based development. The complexity in developing with
current component hosting platforms is already reported within the community of software developers2. As
the market pressure for offering complete turn-key platforms for enterprise-wide component-based
development increases, software vendors are not ready (at least in the short run) to re-assess the complexity
of their products. Mergers and acquisitions add to the complexity of software products: companies trying to
protect their market share acquire and integrate competitors' products into their product lines. The main
driver for integration in most cases is time to market, often with disastrous impact on the overall architecture
of the initial products.

26. It is our belief that, giving the complexity of current market products, it is not possible to expect out-
of the box solutions for software integration and component-based development. The technology for building
component hosting platforms is presently under consolidation so Application Programming Interfaces are not
stable enough to guarantee portability, even across two successive versions of the same product. The
complexity of building components that run in current component hosting platforms is such that companies
and organisations they would have to keep a pool of developers that maintain home-built re-usable
components over a long period of time. As a paradox, end-users of technology like IT departments of
companies and organisations do not benefit from component-based development as the software industry it
self (through standardisation of interfaces between services within the component hosting platforms).

27. In summary, on the one hand, in-house development of component hosting platforms do not solve
the problem of component-based development. On the other hand, acquiring a component hosting platform
would not automatically solve the problem neither. As trivial as this might sound, we believe that the only
way forward is for engineers to careful assess the problem to solve before taking any architectural decision
on the technology to use. Once the problem is understood and the core functional and non-functional
requirements are identified, a meticulous assessment of the functionality offered by the component hosting
platforms of the market must be carried out. By having in mind that no software tool would ever solve the
problem with out-of-box functionality, it is very important to assess how much custom software must be
written in order to make the component hosting platform fit the project needs. This must be done with a lot of
precaution - engineers are always tempted to over-engineering the end-system (especially the non-functional
parts of the software platform). It is often better to limit the features to use than to try to use the full list of
applications programming interfaces offered by a component hosting platform. The critical problem to solve
is not how to do the ``plumbing'' in order to make technology work, but how the tailor the component hosting
platform in order to fit the semantics of the interaction between components of the target application. The
objective of the suggested approach is to shift the focus from technical interoperability between
heterogeneous pieces of software, to semantic interoperability between business abstractions encapsulated in
software components.

V. WHY IS COMPONENT-BASED DEVELOPMENT SO COMPLEX?

28. In the previous sections we have given our view on the current state of the art in component-based
development and the underlying component hosting platforms. In summary, although component-based
development sounds promising as a approach for low cost and efficient software cons truction, the task is

CES/SEM.47/19
page 10

made difficult by the complexity of the underlying component hosting platforms. In order for engineers to
successfully perform component-based development, we propose an approach where the problem drives the
technology to use and not the other way around.

29. Below we analyse why present component hosting platforms ended up with such complex
architectures.

V.1 Middleware and the “virtual mainframe”

30. The aim of early work on middleware and later on application server and integration brokers is to
develop off-the-shelf connectivity software that supports distributed processing at runtime, and is used by
developers to build distributed software. The ultimate objective in building component hosting platforms is to
provide a set of services that enable the creation of a ``virtual mainframe'' from a heterogeneous mixture of
platforms and technologies. Creating a virtual mainframe means delivering an application execution
environment that provides the run-time functionality of a virtual computer, similar to what can be found
today when programming in mainframe environments.

31. We claim that such a vision is not adapted and not suitable in the current context of open computing
environments spawning across wide area networks or the Internet. Components running in open
environments have to use and communicate with other resources and components distributed over the
network, often over unreliable links where latency, failures and disconnection are usual phenomena.

V.2 Where the virtual mainframe paradigm breaks: Wide Area Network programming

32. The technology that underlies all current component hosting platforms is based on the idea of a
virtual address space in which components live and share data, with distributed (possibly world-wide)
garbage collection, where strong typing guarantees the integrity of pointers. Unfortunately, even though
pointers are allowed across machines on a Local Area Network (LAN), e.g. using the notion of network
proxies as in the case of ORBs, they are generally disallowed across firewalls. Similarly, transparent
distributed object systems are unrealistic: some network objects will be kept well hidden within certain
domains, and reaching them will require effort. The essence of present middleware relies on the notion of
action-at-a-distance computing: the idea that components are available transparently at any time, no matter
how far away. While this assumption could hold in a LAN, it cannot work well in a Wide Area Network
(WAN)3.

33. In general, we can forget about the notion of action-at-a-distance computing: the idea that resources
are available transparently at any time, no matter how far away. Instead, we have to get used to the notion
that movement and communication are step-by-step activities, and that they are visibly so: the multiple steps
involved cannot be hidden, collapsed, or rendered atomic. The action-at-a-distance paradigm is still prevalent
within LANs, and this is the fundamental reason why LANs are different from WANs, where such an
assumption cannot hold. If this were possible, we could then go on and program the Internet just like we now
program a LAN. The reason why this is impossible is that there are phenomena observed in the WAN that
remain largely hidden in LAN architectures:

• Virtual locations. Because of the presence of potential attackers, barriers are erected between
mutually distrustful administrative domains. Therefore, a program must be aware of where it is, and
of how to move or communicate between different domains. The existence of separate administrative
domains induces a notion of virtual locations and of virtual distance between locations.

• Physical locations. On a planet-size structure, the speed of light becomes tangible. For example, a
procedure call to the antipodes requires at least 1/10 of a second, independently of future

 CES/SEM.47/19
 page 11

improvements in networking technology. This absolute lower bound to latency induces a notion of
physical locations and physical distance between locations.

• Bandwidth fluctuations. A global network is susceptible to unpredictable congestion and partitioning,
which result in fluctuations or temporary interruptions of bandwidth. Mobile computing is even more
affected by bandwidth fluctuations: mobile devices may perceive bandwidth changes as a
consequence of physical movement. Programs need to be able to observe and react to these
fluctuations.

34. While component hosting environments continue to treat network latency, security authorization
failures, resource unavailability and other WAN phenomena as programming exceptions, the complexity of
the solutions and thus the products that are available and will arrive into the market is doomed to increase.

VI. NEW REQUIREMENTS FOR COMPONENT HOSTING PLATFORMS

35. As presented above, component-based development and component hosting platforms have been
created as a solution to the increasingly complex enterprise computing environments. Such environments
have been created as an (often organic) assembly of applications and components using heterogeneous
technology over a long period of time. It is not unusual to find applications that adopt various architectural
paradigms, including multi-tier and single tier client-server architectures; use heterogeneous storage systems
ranging from DBMSs to files; or communicate using standardized or ad hoc middleware technology. In that
context the primary concern of component hosting platform was to implement the basic ``plumbing'' that
make applications talk to each other. At that time (especially before the Internet era) the interactions between
business people were rather well defined, stable and limited in complexity. The rise of Internet and intranet
technologies has opened up new opportunitie s for collaboration between people. This creates new
requirements for component hosting platforms:

• As more hardware nodes, software applications and people are connected via a network, the value of
that network to the participants grows exponentially and a positive feedback loop is created. The
problem of supporting such a virtual community shifts the focus of distributed computing platforms
from technical integration to the support of collaboration and related services. Supporting networked
people instead of networked components pushes computing hosting platforms to become community
workspaces. In such dynamic environment where virtual teams are rapidly established and equally
rapidly disbanded, the ``virtual mainframe'' paradigm imposing central management of services can
no longer apply without limiting flexibility.

• Business-to-business knowledge sharing, where organizations demand flexibility, without

compromising their internal IT infrastructures can no longer comply with the security paradigm
proposed by current component hosting platforms. The ``enterprise as fortress'' security model cannot
cope with the need for business people to access and share business information appropriate to the
context of their interaction.

• People collaborating with partners and co-workers often mix personal knowledge with corporate

information. Some of this information is unlikely to be of use beyond the scope of this particular
interaction and is thus unlikely to appear in a central repository. This is especially true of transient
information, such as ideas that evolve as the team collaborates. In the face of ever-increasing
volumes of content in diverse structured and unstructured formats, it is impractical (if not
impossible) to provide centralized access to information. A central model of software component
interaction may be limited in terms of the range of content types it can support. Instead of using such
a centralized paradigm, new interoperability platforms should allow people to interact with other
peers in a decentralized but secure manner. Such distributed architectures may provide access to

CES/SEM.47/19
page 12

specialized information resources applicable only to specialized group of users, for example,
transient working documents, or production meta-data.

36. All the above examples show that as the nature of interaction between people over the network
become far-reaching, the need for centralized enterprise-wide computing infrastructures based on heavy
component hosting infrastructures is decreasing. As the focus shifts from interaction between companies,
organizations, and institutions to interaction between knowledge workers, the need for flexible, semantically
aware software platforms becomes more and more important. Pushing this reasoning further, if people had
been able to describe the nature and the semantics of the integration between their peers in the language of
their business, there would be little need for such complex component hosting infrastructures as the ones
available in the market today. This is the primary motivation and the driver of the technological
developments of the STATOBJECT project.

VII. SEMANTIC INTEROPERABILITY AND THE STATOBJECT PROJECT

VII.1 Understanding the problem

37. With regard to the efforts undertaken by the e-Europe initiative, the new shift for short-term
indicators for the EMU policy, the structural indicators for benchmarking European policies and the start up
of enlargement, the European Statistical System (ESS) Network needs to review its functional infrastructure
and adopt a new strategy for its development.

38. The functioning of the ESS is based upon a large co-operation structure around an important number
of working parties, task forces and committees meeting frequently at European and national level. This
involves thousands of persons, using as inputs pre-existing documentation, expressing opinions, and taking
decisions. The output of this co-operative system is encapsulated in legislative documents, norms and
standards or simple textual information.

39. Moreover, the statistical production process within the ESS is constantly impacted by new
regulations at the European level. Statistical offices have to share/exchange information so far kept within
their production systems with other institutions and communities of experts. Private companies are more and
more solicited to supply data to the ESS.

40. Statistical organizations have long ago started re-engineering their functional architecture adopting
new management methods and culture that makes workers more independent and mobile but at the same time
more responsible and accountable. However legacy in IT system is an obstacle to fully implement the new
environment and get all the benefits out of the effort.

41. In that context, the objective of the STATOBJECT project is to investigate the requirements, define
the architecture and implement a prototype of the software infrastructure that make possible for ESS people
and applications to collaborate at a ``semantic'' level. We call this semantic interoperability infrastructure the
European Statistical Grid (see below).

VII.2 STATOBJECT Workplan

42. Work under the STATOBJECT IST project is pursuing the following objectives:

• Conceptualization of the notions underlying core processes of the European Statistical System (ESS)
and description of these abstractions in terms of business object and component models

 CES/SEM.47/19
 page 13

• Definition of the architecture of the European Statistical Grid , i.e. the software infrastructure on
which such models can be implemented

• Validation of the European Statistical Grid concepts and architecture through demonstrators as well
as definition of the path for transitioning to the new ESS architecture.

43. Innovation in STATOBJECT lies in the combination of the following: STATOBJECT decouples
domain modelling from technological constraints and presents a statistical domain model that stands in its
own right and can be used as a roadmap for implementing interoperability between statistical systems.
STATOBJECT stresses the difference between statistical software systems and the infrastructure that is used
to integrate these systems. By enforcing this difference at the architecture level, STATOBJECT allows the
integration of heterogeneous systems using semantic interoperability protocols that are derived from the
domain model. This work structure exhibits a two-step approach in which:

• A formal domain model and an architecture of the underlying software architecture are first defined,
• The above artefacts are validated on real-life examples based on existing statistical processes and

statistical software systems.

VIII. THE EUROPEAN STATISTICAL GRID

VIII.1 Background on Grid Computing

44. Grid computing represents an approach to distributed computing, whereby the resources in the
network are shared and extracted in order to support a common computation request. Most of today's grid
applications are focused on the aggregation of CPU cycles, so that a network of enough individual PCs can
achieve comparable or superior power to a supercomputer. Grids can also be used to enable large datasets to
be shared and accessed by many users. The term ``grid'' in the context of the STATOBJECT project comes
from the analogy between computing resources and statistical resources and applications: instead of
aggregating CPU cycle s, in the context of the STATOBJECT project we target a software infrastructure that
connects people and applications in a network of peers. The European Statistical Grid is the infrastructure
that enables ESS participants and software applications to create a distributed community where human and
software agents can offer and consume services, according to the needs of the statistical production process.

VIII.2 Overall architectural approach

45. The European Statistical Grid is an infrastructure that connects distributed heterogeneous resources
in a peer-to-peer fashion, in such a way that participating nodes can share documents, statistical meta -data as
well as production data in a secure manner. Even though the underlying applications might be based on
heterogeneous software technologies, the interoperability between such a heterogeneous collection of
resources relies on the fact that the resources that are required to interoperate share some level of common
semantics that is derived from the statistical domain model. The technology that enables the technical
integration between heterogeneous software will be based on integration software that enables the definition
of semantically rich interfaces, namely, web services and XML-based business object definitions. Such
business objects would be derived directly from the statistical domain model. In other terms, the domain
model forms the “semantic glue” that allow collections of diverse resources and applications to work
together, and thus plays a crucial role in the construction of the European Statistical Grid. The ultimate
extension of this vision is of a global grid in which all the computers connected to the European Statistical
System network are able to communicate with each other directly on an application-to-application level. Web
services seek to enable application-to-application connectivity across heterogeneous networks and, since grid
infrastructure is designed to address issues of connectivity between disparate resources, there is a significant

CES/SEM.47/19
page 14

level of synergy between the two approaches. In that context STATOBJECT will closely follow the work of
the major web services initiatives, such as Microsoft’s .NET, Sun's Sun ONE and IBM's Web Services.

IX. CONCLUSION

46. This paper presents a survey of component hosting platform technologies available in the market
today. Component hosting platforms is a term used to encompass a set of software interoperability solutions
such as middleware, application servers, and integration brokers - all this been technology created to allow
development of reusable components for distributed software systems.

47. The main idea developed in this paper is that component hosting platforms are currently too complex
to be used on a wide scale by software developers. One of the reasons for this is that they all based on the
idea of the enterprise computing environment as a ``virtual mainframe'' where all computing resources can be
accessible as if they where on the same physical machine. Wide area network issues like accessibility
problems, network latency, network partitions, etc. are treated as programming exceptions. Such view
definitely cannot cope with the increasing need for lightweight infrastructures supporting semantic
interoperability among distributed knowledge workers.

48. Our approach in the context of the STATOBJECT IST project is to develop a semantic
interoperability layer, called the European Statistical Grid where participants of the European Statistical
System can interact by exchanging knowledge and information on a peer-to-peer basis. Such interactions are
based on the interoperability between business objects that are derived from a domain object model and
validated by domain experts. The European Statistical Grid is the infrastructure that enables European
Statistical System participants and software applications to create a distributed community where human and
software agents can offer and consume services, according to the needs of the statistical production process.

Endnotes
1

see ftp://ftp.omg.org/pub/docs/formal/98-12-09.pdf for a detailed description of CORBA services
2

for example see http://www.javageeks.com/SBJP/
3

Luca Cardelli, Abstractions for Mobile Computation. Jan Vitek and Christian Jensen, Editors. Secure
Internet Programming: Security Issues for Mobile and Distributed Objects. Lecture Notes in
Computer Science, Vol. 1603, Springer, 1999. ISBN 3-540-66130-1. pp. 51-94

