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l. I NTRODUCTI ON

1. In the last few years much has been publicized about Data M ning (DM, and
expect ati ons have been rai sed about the new possibilties to discover ‘hidden

val uable information’ in | arge data bases.[ FAY96, ACMB6, HECO97] As statistica

of fices have usually many | arge data sets fromvarious sources, it is inportant to
asess the potential of DMfor the re-use of all these data sets. Not only could DM
perhaps help in finding interesting and reliable findings in the data that are
processed al ready for many years, but perhaps DM could also help to reduce the
nunber of separate data collections that we now maintain. In this contribution an
attenpt is nmade to sketch what we can expect in the near future fromDM by
conparing it with other, nore traditional forms of Exploratory Data Anal ysis.

. WHAT | S EDA

2. Expl oratory Data Analysis (EDA) predates the conputer era.[TUK77] It is data
analysis with an unfocussed goal, and usually in an early stage. The goal is the
di scovery of hitherto unknown properties of the data set, especially relations
between variables. Usually this inplies that the data set is ‘new to the analyst,
t hough there is sonetines occasion to look at a well known data set froma fresh
point of view Even if the data set is ‘new to the analyst, usually sone
background know edge and a priori assunptions about the data are needed. Even
though a small data set can be analysed if there comes no docunentation at all with
the data [ISR82], it is very hard indeed to analyse a data set with many vari abl es
when it is unknown what the variables stand for

3. The di scovery of unknown properties and relations is at the one end of a
conti nuum the other end of which is forned by the fine tuning of an established
relation or the inprovenent of the degree of certainty of an accepted nmodel. In

the detection of unknown properties, it is not the intention to ‘just discover
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sonmething new . Quite often sonme nmental inmage of the topic under study is present,
and some —quite inplicit —expectations about how the data should be |like are
available. But the analyst is looking in a |l ess focussed way at the data set, both
in order to find ‘real’ properties, and to discover how the data are actually
collected and represented. It is a well known fact to analysts, that the netadata?
to data sets are quite often idealized.® Mreover, in the early stages of

anal ysis, the distributions of the variables, the mssing value pattern, the main
primary rel ations between the variables, and the structure of the data set is
‘learned’” by the analyst. Once an analyst is famliar with a data set, he can
choose one or several suitable analytic nethods (see section V. B. Interpretation),
of course also with an eye towards sone research question. |In this early stage

al so suitable transformations to variables (e.g. logarithmc, |ogistic,

di scretisation) are perforned, ainmed at making the representation of the data
better match the analytic nethods.*

4, Here EDA nore or |ess ends, as further steps in the analysis evolve to be
nmore in-depth-analytic. 1s there a sharp distinction between EDA and in-depth-
anal ysis? Probably not.® Not so, because there is a continuous transition between
vague, widely and narrow y-focussed anal ytic goals, and consequently instrunents.
And in all stages of analysis, one has to keep an open mind for pitfalls of
artefacts, errors, bias, noise, and msinterpretation. Probably, because it may be
justified to require in the EDA phase that statistical testing of hypotheses is not
performed.® Moreover, the boundary between EDA and in-depth-analysis is beconing
even nore blurred by the devel opnent of fast conputers and sophisticated software.
In a nodern sense of the word, EDA nay be considered to pertain to a famly of

mul tiple runs of, say, discrimnant analysis with a slightly differently defined
target variable; or to nmake thousands of cross tabulations in search of a ‘hit’.
The word exploratory in EDA has had al so the connotation of easy to perform as it
is wise to do the sinple things before the hard ones. But what is easy to perform
changes with technol ogi cal devel opnents.

I11. WHAT IS DM

5. Data mning is a conbination of conputational and statistical techniques to
perform EDA on rather large, and nostly not very well cleaned data sets (or data

2 Met a- dat a neans data about the data, not only record description and variabl e

codi ngs, but also how the data were collected and what their ‘real life' neaning is.

3 It is a sad fact of life, that npst data sets, even the well docunented ones
can not fully be understood fromthe nmeta-data or docunmentation. Quite often it is
necessary to call upon the data collectors and docunenters to clear up inportant
aspect s.

4 Froma (nmathenatical) statistician’s point of view, it can hardly hurt to

performtransformations that gives nore normal distributions. Froman anal yst’s point
of view, this may not always be hel pful, as the transforned variables may have no
I onger any ‘real life' nmeaning.

5 Purists would say: “There should be.” Froma didactical and theoretical point
of view, it is good to nake a sharp distinction between (a) data cleaning, (b)
exploration, (c) fornulation (but not testing of) hypotheses, and (d) testing of
hypot heses. (a)—(c) are considered EDA. But our point here is that these steps are
often interleaved, not only because of practical reasons, but al so because data

cl eani ng, exploration and formul ati on each influence each other.

6 If EDAis limted to studying one data set and neking no inferences, i.e. no
general i sations towards |larger populations, then statistical testing is often said to
make no sense, as the data set is ‘the whole universe’. But, even if a data set is
the whol e universe, it is useful to how honpbgeneous the data set is for a given
finding, which requires testing. A high honogeneity gives nore confidence about
future findings, it is a kind of internal generalisation
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bases).” The termis a kind of warrior’s nane, as data miners are well aware of
the fact that ‘pure’ statisticians dislike the activity of |ooking for

signi ficance, which they also call derogatorily data fishing or data dredging.

Data m ners al so know that the netaphore of mining as a sturdy, industrial and
profitable process is attractive to many other types of persons, especially if the
mning is considered to be gold mning. Be that as it my, data mning is usually
nmore applied (and so borrows from disciplines such as deci sion support systens,
managenment informati on systens) than EDA, which grows fromthe tree of statistics.
Mor eover, data mining is heavily dependent upon data base theory and techni ques and
on artificial intelligence achievements for the realization of it's prom ses. The
ultimate raison d étre of data mning is: “However fast conputers wll beconeg,
there will always be data sets that are so |arge and have so many vari abl es, that
an exhaustive search for all potential interesting findings is inmpossible.
Therefore, we need (conputerized) techni ques that make a good guess in selecting
nost of the areas that are npbst promising to scrutinize further.” Especially in
situations when there is little “hard” a priori know edge, or when we expect highly
non-linear effects or conplex interacions, or when deep insight is |ess inportant
than simul ation or taking appropriate nmeasures, data mning can be nore useful than
real statistical analysis.

V. ROLE OF EDA | N STATI STI CAL OFFI CES

6. Acknowl edgi ng the fact that there is not one role nodel for statistica
offices, it can be said that they have sonme things in commbn. One of those is that
(re)production has nore enphasis than new design or entering undi scovered grounds.
O course, the ongoing devel opnents incur a need for innovation and research, but
statistical offices have a tendency to do research only in directions that can

| ater repeatedly be applied for ‘production’. A single instance analysis of a data
set is not unknown in statistical offices, but in nost offices it will be
relatively rare. National statistical offices that are | eaning nore towards a
consultancy role in society, as can be found nowadays, m ght have nore use for one-
of f analyses. Yet, EDA plays a role in statistical offices, for the purposes of
(not in order of inportance):

— feeling famliar with the data, and knowi ng your data thoroughly;

— general quality control, data cleaning, or nore specific error searching when
strange things are com ng out

— detecting the nost inportant new or newsworthy features of a dataset

— speci al anal yses, perhaps paid for by third parties the devel opment of new
statistics

— creating ‘new data sets by conbining or matching ‘old data sets.

All together, this neans that EDA is always a step that is part of a |arger
process, and that EDA has a limted role in statistical offices. Still, EDA has
been performed daily in statistical offices, and some formof (nostly infornmal)
standard practice exists. This will be described now.

V. EDA BY HAND

7. EDA ‘ by hand’ does not nean using pencil and paper only, but w thout the use
of typical data mining software. Traditional software tools, such as aggregating,
tabul ati ng, (plain) displaying software and the ‘classical’ statistical packages
(SPSS, SAS) can be used to do EDA, where every (small) step is determ ned by human
intervention and preparation (hence: ‘by hand’). As nentioned briefly in the

i ntroduction, there are several levels of unfanmiliarity with a data set, which for

7 In this paper we will not cover the relation of DMwith Data Warehousing, i.e
taking care that data fromdifferent sources are neatly organised, can be linked to
each other and use the sanme definitions for (essentially) the sane phenonena. W do
not require that DMis acting on data fromdifferent sources.
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the purpose of this treatise we will distinguish in representation and
interpretation —even though these el enents are rel at ed.

A Repr esent ati on

8. If a data set is conpletely new or unknown, the first task is to study the
format of the data set, the records and the variables. Based upon a conbi nation of
t he docunentati on —often obscure —and sone trial tables, for each val ue of each
variable it has to becone clear what it stands for. Special attention is needed
for structured data (such as sub-questionaires, repeated questions) as a notation
for “NNA" (not applicable) on the single variable level often does not reflect the
reason why this (block of) variable(s) is skipped. Simlarly, a very tricky matter
is always the notation for the various reasons of “missing” data, which sometines
can be coded unexpectedly as 31 June (for a missing date), or as 99999 or -1 (for a
m ssing number). Also, sone effort is needed to find out that every variable is
multiplied with the appropriate weight, if weighted sanpling has been used. Yet
anot her obligatory task: find out whether sone data have been inputed, and how

t hese can be recogni sed.

9. This step is often omtted fromtextbooks, as the exanples in there are
usual |y based upon small and easy to grab data sets. Wth large data sets there is
need for a round of prelimnary contact with the data set, before |ooking at

i ndi vi dual vari abl es.

10. The next step is usually a univariate check-up. The distribution of the
variables is surveyed, and sone transformation or recoding variables is done, e.g.
a log transformto make the distribution | ess skewed, a discretisation (taking care
that this does not hide peaks or introduce spurious effects), and sone conbi nations
of values. During this process, also a prelimnary per - variable renoval (or
setting to a reasonable limt) of outliers is performed, usually rather

intuitively.

11. A next step is often nultivariate. |t consists of inspection of two- or

t hr ee- way® conbi nations of the nost inportant variables, either as scatterplot,® as
cross table or as correlation matrices. This frequently gives information about
not - document ed, but al ready el sewhere well-known, properties of the data

col | ecti on.

12. Even if the data set is obtained froma very reliable source and contains no
errors and conmes with clear and detail ed docunentati on, nost of the above steps
will have to be (quickly) perforned in order to famliarise the analyst with the
dat a.

13. Until now, the steps are not in considerable nmeasure dependent upon the goa
of any further analysis, called here the research question. Sonme of the steps
coul d have been automated, but the neta-information about a data set is not always
sufficient or not sufficiently processable in conmputer form Mreover, if these
steps are automated, there is no |learning process in the mnd of the analyst.
Still, there is a need and plenty of opportunities for automating this, rather
descriptive, part of EDA

B. Interpretation

14. Gradual ly, the EDA proceeds to try to understand and perhaps nodel the
rel ati ons between sone of the variables. Now the steps are | ess standardi zed. One
has to at | east choose independent variables, dependent variables, sone nodel or

8 Usual ly not nmore than three, as higher dinmensional tables are hard to oversee
for humans.

9 For possibilities of visual exploration of data, see [CLE94]
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analytic technique. Quite often the conplexity of the nodel (linear, higher order
nunber of interaction levels allowed) is reluctantly constrai ned, because of
limtations in conputing resources or available data. An inportant guide in this
stage is the R or simlar neasure' and the distribution of the residuals, which

i ndi cates how much we have gained or can gain by making the nodel nore conpl ex.

15. Sonetinmes the transformati ons nentioned in the representation section V. A
are notivated by the analytic nethod to be used or by internediate results. For
exanpl e, a discretisation of a dependent variable, if discrimnant analysis is

pl anned; or the conbination of a few values of a discrete variable that have al nost
no different effect, if sparse cells are to be renoved.

16. What anal ytical technique is used depends very much upon the research
question —but al so upon the avail able data and their type. Have we fixed the
dependent and i ndependent variables, or do we want to find good predicting

(i ndependent) variables? Have we fixed the order of the nodel-equation (linear
quadratic, higher) and the nunber and |l evel of interaction terms and constants, or
do we want to fit any nodel? Al this can be considered part of EDA. |If we have
fixed the nodel, we nay want to estimate the range of sonme parameters, if we think
to know every (inportant) variable we may want to test some explicit (and perhaps
intricate) hypotheses. The last two ains may not be EDA. But there is a relation
bet ween how we can fit nodels and test hypotheses: we need (al nost) the sane
statistical approach (and software). This neans that we have to think already at
t he EDA phase about the possibilities for |later hypothesis testing.

C. Ref i nenent

17. At sone stage, the nodel is nore or less clear, and sonme attenpts are nade,
to make the nodel nore robust or the effect nore pronounced. This is not

consi dered part of EDA anynore, as is verification of the findings on a new data
set. Note that the ‘classical’ distinction of a descriptive step, followed by a
generated hypothesis and statistical testing of the latter is neither conpletely
foll owed, nor abandoned. |In practice today, because of conputing power, the
descriptive step can sonetines be a description, list, of candidate hypotheses with
test figures. O course the role of ‘testing for 5% significance’ is changed

consi derably by this.

VI . DM AS EDA

18. Data M ning usually is not concerned with the very first steps of the ‘hby
hand’ phase: the data are supposed to be in a neat, well understood format, and
their nmeaning should be clear.* |f DMis supposed to run straight from
(production) data bases, however, the different perspective that is applied to the
data may well involve additional surveys of the type described in section V. A
Represent ati on.

19. Currently, nost data mning approaches make a cl ear distintion between the
(calculation of the) criterion that has to be maxim zed (or mnimnzed), e.g. an
associ ati on neasure or a distance nmeasure, and the maxim zing algorithm often
call ed the search engine.

10 Provided that the case/variable ratio is high enough.

1 DMis used by us in a linted sense. Ohers sonetines use the termfor the

whol e process of cleaning, inspecting, exploring data and using the findings. For
this we prefer the term KDD, which stands for Know edge D scovery and Data M ning
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A Search engi nes
20. G ven a one-dinensional criterion that is deternmned by a (very) high

di mensi onal space of explanatory variables, with no a priori constraints on the
irregularity of the surface, there exists no nethod besides exhaustive search to
find with certainty the absolute maximum |If an exhaustive search is too expensive
or too slow, there are various nethods to reach with a reasonable |ikelihood a
maxi mum that is nore or less a global maxinum In essence, this goes as foll ows:

froma starting point a |local maxinmumis sought, i.e. follow ng the gradient by
sonme di screte steps, hoping that the step size is not so large that the gradient
has reversed signs in between. 1In order to verify that not a very local maximumis

reached, either sone tolerance is built in of accepting small declines while
continuing the search for a maximum or a few values on some di stance fromthe
first found maxi num are conpared, or sone alternative directions are tried for a
few steps. Well known algorithms are, e.g. sinulated annealing, tabu search, or
genetic algorithnms.[ AAR97] Then new starting points, at a considerable distance
fromthe first one and fromthe found local maxima are tried, to see whether they
end on the same | ocal maxi num or a |ower maxi mum or a higher one. The choice of
the first and the subsequent starting points is uninportant if the surface is
rather smooth —fortunately this happens nore often than we woul d dare to hope —
but rather critical with irregular surfaces. Moreover, the speed with which a
solution is found is very nuch influenced by a ‘lucky’ choice of starting val ues.
Several approaches of generating starting points are in use, varying fromthe rigid
equi -distant grids, to nore dense sanples in regions where the gradients are nore
varying, to pseudo-random points, or ‘prom sing points’ (genetic algorithms). Al
inall, the different search nethods can be better (or worse) in two different
aspects: is the maxi mum found really the gl obal maxi mum and how fast is the result
f ound.

B. Optim zation criterion
21. As mentioned above, the criterion that is maxi m zed has to be one
di mensional. This is necessary for the search engi nes, and al so because it is

conceptual ly easier to think of nmaxim zing in one dinmension. As soon as
maxi m zation has to be perfornmed on nore than one criterion at a tine, trade-off’s
have to be specified if the gradient of sone of them have a different sign. The
specification of a trade-off function in general is quite difficult, and it nostly
easier to make a choice afterwards, if the surface of the several single criteria
is knowmn. In this case sinply |ooking for the maximumis not sufficient, one needs
to have at |east an inpression of the surfaces of all criteria in the region

bet ween the individual naxina.

22. Constraining to single dinensional criteria: we can focuss our attention on
measures of distance or closeness of groups, or of separation (as in discrinm nant
analysis and classification), on simlarity in tine, on typicality (being “in the
m ddle ') or on atypicality (outliers), on change, on rel atedness or indepedence,
etc. The neasure that statisticians are nost used to fall in the catagories of
associ ati on between variabl es, distance between groups and information (residues)
of data sets.

VIlI. PITFALLS

A Noi se vs bi as

23. When | arge data sets are anal ysed, the inportance of random (or stochastic)
noi se becomes less inportant. Wth sufficient nunbers virtually any difference,

even negligi bl e ones, becone ‘significant’. So there is a false feeling that if

one has large data sets available, it it easier to discover the ‘true’ differences.
But, unfortunately, in practice there is another problem npst |arge data sets are
| ess consistently collected. Differences in (space or tinme) local adm nstrative
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procedures (including the rigorousness of error checking and updating) and of
definitions and notations, sanpling and non-response nake that many effects creeps
into large data sets that can be easily confused with sone ‘real’ effect.
Scientific data collections often spend an extraordinary effort in excluding the
above nentioned reasons for artefacts. Furthernore, scientific data collections

of ten include random zed subgroups to cancel out the renmining effects of these and
unknown artefacts. The price that these scientific data collections have to pay is
mostly limted size. But the limtations that production type |arge data sets
have, is that artefacts, biases, will be hard to exclude afterwards.

B. Li near nodel s may becone now non-1i near

24. There is one nore benefit of large scale data sets: finally we have
sufficient data to try to fit nore than a linear nodel with only a few
interactions. In the past, with linmted data sets, often linear or other sinple

rel ati on between variables had to be assunmed, because there woul d never be
sufficient data to support anything fancier. How far can we go in adding ternms and
interactions? Is a nodel with 20 terms still useful for interpretation? If the
size of the data set does not put a constraint on the class of the nodel, where do
we have to stop? Clearly the answer lies outside traditional EDA

C. Overfitting

25. Overfitting is making a nodel that perforns well on one data set, but not on
a ‘simlar’ one (next year’s, e.g.). Basically, there is no renedy agai nst
overfitting, except for trying it on another data set. |In practice, however, sone

assunptions about the representativity of the data set are nade, supported by sone
ot her assunptions about the stochastic noise present and sone limts to the

i nterdependence of the variables. This prevents many cases of overfitting. More
concretely, in many cl assical approaches of fitting, the addition of an extra term
shoul d give ‘sufficient’ reduction in residual variance (or deviance). This is not
a final answer, as there are quite some assunptions underlying this approach, which
are with practical data sets al nost always violated (slightly).

26. A good thing about |large data sets is, that they can be split up to see how
nodel s, fitted on one part, are performng on other parts. As nost data sets that
are used in data mning exanples are ‘one of a kind, that may be the only solution
to make a statenment about the (internal) generalisability of a fitted nodel. W
are tal king about bootstrapping and jack-knifing. Perhaps the worst thing that can
be done with a large data set, is data mining on the whole data set.?® It is likely
not an inportant effect if it cannot be shown in a few thousand rel evant cases.

But often one need a data set of several hundred thousand cases, to keep a few

t housand rel evant cases after preprocessing. (For exanple: subgroups, interactions,
boundary cells, etc.) |If taking sanples fromthe data set (for bootstrapping) is
not done because it may dilute a supposed effect, we are in nmobst cases not talKking
about | arge data sets anynore, and the DM EDA aspects are giving way to the
refinement stages of analysis.

D. First peeking ahead, then predicting the result
27. Data m ning, but also current daily practice of EDA ‘by hand involves nmany
cycles of generating still nore interesting tables and ‘nmassaging’ the data. This

is why data mning, now called data dredgi ng, has such a bad nane with nmany
statisticians. Wat neaning has it that a certain nodel has a p-value of, say,
2.03% if we just learned that a simlar nodel had a p-value of 2.12% The 5%

12 O course one can take the opposite approach, and check al ways whet her an

effect found in the whole data set is present in all parts of it; but hunan weakness
makes that often the analysis stops if an effect is found in the whole data set.
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significance test is too soft because of the repeated tests, and Bonferoni’s
correction is too harsh to be popular. Perhaps we should not |ook at significance
whi | e maxi m zi ng, but only once, afterwards, and use a statistical nodel for the
signficance for finding a maxim zed effect. [ML81].

28. O her areas which cause often problens with data anal ysis, such as the
consi stency between data sets, the definition of simlar variables, and the
treatment of the variable time will not be touched here, as they are not caused by
DM nor solved by it. Still, they put constraints on the applicability of DM

VII1. LIMTATI ONS

29. As wi th any devel opi ng discipline, DMI|eaves currently many w shes open. So
Il ong as these are not yet fulfilled, applications that can be data m ned on, have
to be carefully selected. Sone of these inperfections are also unresolved in EDA
‘by hand’ but there they can be nore easily run around. Currently DM al gorithns
are notably weak in the handling of nissing values, structured data, ** (i.e. sone
bl ocks skipped, multiple answers) and repeated neasurenments, |ongitudinal data or
time series. This nmeans that ‘real life data sets, even after clean up, nust be
consi derably preprocessed, before data mning can start. Moreover, unti

optim zation criteria are devel opped that ‘know about these properties of data
sets, the search engines are of limted use.

30. The data mning conmunity has placed maj or enphasis on the use of DM for
finding deviating subgroups, which is especially attractive for marketing purposes.
Acknowl edging that this is only one element of DM it nust be said that it is often
done by | ooking at higher order interactions w thout |ooking at the main effects
and |l ower order interactions. Wthout the notion of an (w sely conputed) expected
val ue, the extremes of the observed values have little to say. In other words,
some work has to be done to reconcile (or augnent) statistical theory with the new
possi bilties of automated searches.

I X. EXAMPLES

31. Wl | - known exanpl es come from banking (credit card fraud detection),
i nsurance (risk profiles, suspiciuous clains), retail trade (‘market basket’
analysis), etc. In statistical offices there are not so nany exanpl es of conpl eted

DM projects. Therefore, a few exanples of potential questions that could be
studi ed by statistical offices, and where DM techniques are likely to be useful are
ment i oned.

32. Most statistical offices keep some statistics about domestic migration
patterns. |If these migration events can be matched to sonme other data about the
person or househol d that has mgrated, an analysis of which categories of persons
are likely to mgrate (to cities, suburbs, country side) could be undertaken

Some sort of budget survey (i.e. about consumers’ expenditure patterns) is
available in nost statistical offices; it could go beyond the collection

categori zation and tabul ation of the material, and try to assess the ngjor

determ nants of expenditure preferences and shifts between the main conpeting
alternatige destinations.

33. From a busi ness register, one could try to find out what are the major
factors which determ ne whether astarting business survives the first year. Data
fromthe Enployment O fices, when nmatched with additional information about the job
seekers, could be used to find out the different unenploynment patterns over time in
several groups of people.

13 Data are called structured when sone vari abl es show a systemati ¢ non-noi sy

rel ation.
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