Distr. GENERAL

INTERNATIONAL LABOUR

ORGANISATION (ILO)

CES/AC.49/2001/8 16 August 2001

Original : ENGLISH

STATISTICAL COMMISSION and ECONOMIC COMMISSION FOR EUROPE

CONFERENCE OF EUROPEAN STATISTICIANS

<u>Joint ECE/ILO Meeting</u> <u>on Consumer Price Indices</u> (Geneva, 1-2 November 2001)

SAMPLING IN CONSUMER PRICE INDICES: HOW SCANNER DATA MIGHT HELP

Invited Paper submitted by Office of National Statistics of United Kingdom*

Summary

The quality of a consumer price index depends critically on the quality of the data, and in particular on the representativity of both the sample of retail outlets used to monitor prices and the choice of items priced. This paper looks at the scope for enhancing the quality of a price index by using scanner data as a benchmark to check the representativity of the achieved sample, to control initial sample selection and to adjust after the event for inadequacies in achieved samples. The paper begins by reviewing the underlying principles behind sample selection and the practical choices available to the compiler of an index and the subsequent issues that arise. It looks at the current sampling procedures for the UK Retail

^{*} Prepared by David Fenwick and Adrian Ball, Office for National Statistics of United Kingdom, 1 Drummond Gate, London SW1V 2QQ, United Kingdom. E-mail: <u>david fenwick@ons.gov.uk</u> and <u>adrian ball@ons.gov.uk</u>

Prices Index (RPI), comparing the principals on which it is based with those underlying the compilation of scanner data. It then considers practical issues surrounding the possible use of scanner data to improve current sampling methods. The paper looks separately at two aspects of sampling methodology within the RPI, item selection and outlet selection. For item selection the paper will focus on consumer durables where traditionally the maintenance of representativity has been most challenging. Scanner data is used to benchmark the current sample for consumer durables with high replacement ratios, such as televisions, highlighting differences and presenting solutions by controlling the sample through quotas. The paper also investigates the potential use of scanner data for choosing replacement varieties when the original has disappeared from the shelves and when there is an associated quality change. Also addressed is the timing of the selection and item rotation. For outlet selection the paper highlights the differences in prices that can occur between different outlet types, and points to the advantages of selecting a more finely defined stratification to ensure representativity. The paper concludes by developing improved guidelines and quality control procedures for price collection.

Keywords: scanner data, outlets, items, new & old goods, stratification, random & purposive sampling, representativity, modelling, re-weighting, re-sampling, quotas, benchmarking, quality control, guidelines.

I. Introduction

1. A number of studies in the past have pointed to the possibility of scanner data being used in the compilation of consumer price indices either as a direct source of price data in its own right or for the estimation of appropriate quality adjustments when item substitution takes place and the characteristics of the items being priced change. In addition it has been suggested that scanner data has the potential to contribute to the effectiveness of traditional probability sampling procedures.

2. The potential gains from utilising scanner data are not insignificant, particularly if hedonic regressions and scanner data are used to supplement current practice to better serve, via an integrated approach, the needs of both representativity and quality adjustment.

3. It is in this context that a joint research project was set up between the ONS and the Cardiff Business School, Cardiff University, to both explore the potential for using scanner data as a diagnostic tool for the identification of potential deficiencies in RPI data collection and to provide solutions. This papers presents the results of the work completed to date.

II. Background: RPI target population and sampling procedures

Target population

4. The RPI is an average measure of the change in prices of goods and services bought for the purposes of consumption by the vast majority of households in the UK. The reference population is all private households with the exception of a) pensioner households that derive at least three-quarters of their total income from state pensions and benefits and b) "high income households" whose total household income lies within the top four per cent of all households. The reference expenditure items are the goods and services bought by the reference population for consumption. Prices used in the calculation of the index should reflect the cash prices typically paid by the reference population for these goods and services. The index is compiled mainly on an acquisition basis, in other words on the total value of goods and services acquired during a given period regardless of whether they are wholly paid for in that period. The main exception is owner-occupied housing where a user cost approach is adopted.

Price Reference Day

The price reference day is the second or third Tuesday in the month.

General approach to sampling and price collection

5. The Office for National Statistics currently follows a traditional approach to sampling, whereby prices are collected locally, from individual shops, and centrally, using nationwide tariffs for utilities or returns submitted by the Head Offices' of retail chains with central pricing policies. The major difficulty with this approach is the lack of availability of a suitable sampling frame to represent the target universe in terms of geography, outlet, product line and individual item. This means that National Statistical Institutes are often obliged to either construct their own sampling frames and random selection procedures or to resort to purposive sampling. These procedures do, of course, need to satisfy representativity in the time dimension. The latter is generally considered less problematical than geography, outlet and product line and item representativity certainly in the context of the price reference period. It should be noted in this context that the choice of price reference day for the RPI was informed by a study of shopping patterns. This concluded that a Tuesday in the middle of the month was likely to be most representative. However, there is another element of the time dimension, namely the deterioration in sample representativity as the "fixed" basket ages as a result of the introduction of new products and outlet, item and variety substitution by consumers. Thus the time dimension is present in all aspects of sampling for a consumer price index.

Sampling procedures for local price collection

6. Current methodology for the selection of locations from which we collect local prices was introduced in 2000. This aims to give each shopping location in the UK a probability of being selected for price collection equal to its share of total consumer expenditure. This is achieved using a two stage hierarchical sampling frame based on geographical regions. A total of 141 locations are required for local price collection and the number to be selected within each of the regions is determined by taking a proportion equal to the proportion of total UK

expenditure that each region attracts. This is the first stage of the sample and is based on information obtained from household expenditure surveys. Within each region locations are selected on a probability proportional to size basis, using the number of employees in the retail sector as a proxy for expenditure. Practical considerations mean that this basic principle is modified in two ways. Firstly, because it is not cost effective to collect from areas too small to provide a reasonable proportion of the full list of items, we exclude locations which had fewer than 250 outlets. Secondly, and for similar reasons related to cost effectiveness, out of town shopping areas, in which a high level of expenditure takes place, but from which it is not possible to obtain all items, are paired with smaller locations nearby from which the rest of the items can be obtained. This joint location is then treated as a single location in the probability sampling.

7. Each selected location is then enumerated by price collectors to produce a sampling frame from which outlets are randomly selected. Multiple and independent retailers are separately identified. This processes is performed on a rotation basis, so that the whole sample is refreshed every five years.

8. In contrast to outlet sampling, the selection of representative items to be used to calculate the RPI is purposive (i.e. judgmental not random). All categories of expenditure on which, according to the household expenditure survey, significant amounts of money are spent are arranged into about eighty sections and items are chosen to be representative of each section. The number of representative items for each section depends on both the weight given to that section and the variability of the prices of the items covered by that section. Around 650 representative items are chosen centrally by commodity specialists and reviewed each January to ensure that they continue to be representative of the section. New items are chosen to represent new or increasing areas of expenditure, or to reduce the volatility of higher level aggregates. Other items are removed if expenditure on them falls to insignificant levels. Decisions are informed by market research reports, newspapers, trade journals and price collectors in the field. This enables the basket to be kept up to date but it does not, on its own, guarantee sample representativity. The descriptions are generic rather than prescriptive leaving the price collector with the task of choosing the precise product or variety to be priced.

9. The selection by the price collector of the products and varieties to represent the selected items is also purposive and carried out in the field. Price collectors are instructed to choose the product or variety in the selected shop that most represents sales of that particular item in that particular shop. In practice the price collector will normally get the assistance of the shopkeeper to help in this process by asking which is the best selling product or variety. This is, in most cases, the one that is chosen as the representative item for price monitoring. This shop based sampling procedure has the advantage of increasing the achieved sample size by overcoming the problem of particular shops not stocking a particular product or variety. Also, in theory, it spreads the sample to include a wider range of products and varieties than would be covered if a very tight description were employed.

Sampling for centrally collected prices and prices obtained over the telephone.

10. In some instances prices are collected centrally, without resort to the expensive activity of sending price collectors into the field. Central price collection covers two distinct sets of circumstances:

- **Central shops** where for cost-effectiveness prices are collected direct from the headquarters of multiples with national pricing policies. These prices are then combined with prices collected locally from other outlets in proportion to the number of outlets originally chosen in the selected locations;
- **Central items** where there are a limited number of suppliers and where purchases of the item do not normally take place at local outlets. Examples of these include gas, electricity and water where prices are extracted from tariffs supplied direct by the Head Offices of the companies involved. These data are used to create sub-indices that are combined with other sub-indices to produce the all items RPI.

11. In addition the prices of some items are collected over the telephone, with the retailer being visited in person only occasionally to ensure that the quality of response is being maintained. Such prices include electrician's charges, where there is no outlet as such, and entrance fees to leisure centres, where there are unlikely to be any ambiguities over pricing and where a trip to the centre may be relatively time consuming for the collection of just one price. These prices are combined, as appropriate, with locally collected data.

Critical factors

12. The procedures for sampling locations and shops are, on the whole, statistically rigorous leaving limited opportunity for problems to arise. The view is therefore taken that the potential for problems of non-representativity to materialise is most likely to be associated with the selection of items - more so given the relatively high item turnover for some products. Therefore it is clear that success in achieving a representative sample in the context of the UK RPI is particularly dependent on:

- The procedures for the initial purposive sampling of items in the field;
- The procedures used for selecting forced replacements when items disappear from shops' shelves;
- The procedures in place to update the sample selection to reflect the general turnover in products and varieties.

13. It was with these issues in mind that an exercise was undertaken to benchmark the achieved RPI sample, for a selection of electrical and hi-tech goods, with corresponding scanner data and to compare the relative price levels and price movements.

14. Before presenting this exercise it is worthwhile reminding ourselves of the main characteristics of scanner data, especially as scanner data itself is not specifically designed for the compilation of consumer price indices and therefore has its own problems. The characteristics of scanner data are reviewed in the next section.

III. Characteristics of scanner data

15. Scanner data is compiled from electronic point of sale (EPOS) data recorded by bar-code readers at the time and point of purchase. As more shops move over to bar-code readers, scanner data increasingly provides the potential to deliver up-to-date and accurate information on:

- Number of sales over a chosen period of individual product varieties uniquely identified by the barcode number;
- The total value of those sales and by implication the average transaction "price";
- A listing of the individual characteristics of the individual product varieties concerned;
- Geographical and other characteristics relating to the outlet.

16. In reality the current market coverage of scanner data varies between different shop types and commodity groups and the amount and detail of data actually available can vary depending on the commercial source and on the individual product or product group. Also because scanner data is a by-product of a financial accounting and stock system it is not specifically designed with the price statistician in mind, and this has implications for its use in index compilation. Firstly, definitions may not be compatible with the definition of the index. For example, the average transaction "price" recorded by scanner data includes discounts such as those relating to damaged stock, not normally included in consumer price indices. Secondly the coding of data may not be in a readily useable form, and compatible with international standards. This applies, for example, to the categorisation into commodity headings.

17. In addition, and more generally, past experience indicates that a great deal of expertise and effort is needed to clean scanner data to adjust for such things as re-used bar-codes, in order to make it usable for statistical purposes.

Main definitional differences between scanner data and data collected locally for the Retail Prices Index

- 18. The main differences between the two data sets are:
- RPI data covers transactions conducted in retail outlets by private households for private domestic consumption. Scanner data covers only EPOS sales, usually supplemented by surveys to cover shops where bar coding is not used. It often excludes "own" brands but includes sales to commercial customers;
- RPI data excludes conditional discounts (for example, where a "club" card is required), twofor-one offers, personal discounts offered on a one-off basis by shop managers and discounts on discontinued or damaged stock. Scanner data measures average revenue generated after discounts given by whatever method, it will include discontinued or shop-soiled stock and will attribute discounts to the scanner code rather than to the transaction (for example, free video tapes given away with a recorder will be shown as a reduction in average revenue for video tapes);

- RPI data relates to a fixed selection of outlets and therefore excludes the effects of outlet substitution. Scanner data relates to current transactions and therefore includes outlet substitution;
- At the "item" level RPI data on prices is unweighted whereas the scanner data takes into account the different quantities sold of each model or variety.

19. Whilst the numerical impact of these differences is not known, it is clear that the impact will not necessarily be constant over time and will vary with market circumstances and commodity type.

20. Other characteristics of the two data sources need to be borne in mind when comparing display prices in shops and corresponding scanner data, including:

- The sampling error associated with sample surveys, particularly at the level of product variety which is investigated in this paper (the RPI sample is not designed to provide reliable information at this level of detail). In contrast, scanner data provides total coverage for those retail segments included;
- The RPI records prices for a particular day in the month whilst the scanner data used for this exercise cover a whole month;
- Scanner data distinguishes between different types of retailers such as multiple and independent whilst RPI data doesn't (there is no need because the sample for local price collection is designed to be self-weighting). This means that there is a potential problem of lack of homogeneity in comparisons between the two data sources if the mix of outlet types varies between the two data sources and changes over time.

IV. Research design

- 21. The research consisted of three stages:
- The benchmarking of RPI product and variety selection against corresponding scanner data. This involved a comparison a relative distributions of sales proportions, and proportions of quotes;
- A comparison of RPI average unit prices and price changes with the corresponding unit values (i.e. average revenue generation) and unit value movements obtained from scanner data;
- An investigation of possible options for enhancing the performance of traditional sampling techniques by utilising scanner data in standard data collection procedures and for adopting an integrated approach to representativity and quality adjustment.

22. Investigations focussed on five pre-selected items: televisions; washing machines; vacuum cleaners; dishwashers; and cameras. Related work was also carried out on the same

database to investigate hedonic regression techniques for explicit quality adjustment and for identifying key item characteristics that need to be taken into account when making forced replacements for items that have disappeared from shops shelves. It has become increasingly clear during the course of the work that sample representativity and quality adjustment are inter-linked. We return to the latter towards theend of this paper.

V. Representativity of product and variety selection

23. The purpose of this stage of the research was to determine the extent to which current selection practices may lead to unrepresentative samples of products and varieties being chosen for pricing. It looked at overall distributions obtained from the selection procedures used in the RPI and compared these with the overall distributions given by scanner data. Monthly data were compared for the period from August 1999 to October 1999. This was done at an aggregate level, there was no individual linkage of data.

Summary of results

24. In table 1 below the distributions of price quotes by model are ordered to show the top 10 sellers for each product group in September 1999 according to sales volume from scanner data. Alongside are the corresponding proportions of quotes represented in the RPI collection for that item.

	14" Televisions		21" Tele	evisions	Vacuum Cleaners	
Model	Percentage of	Percentage of	Percentage of	Percentage of	Percentage of	Percentage of
	scanner data	RPI quotes	scanner data	RPI quotes	scanner data	RPI quotes
Model 1	17.7 (17.7)	1.0 (1.0)	16.2 (16.2)	10.5 (10.5)	30.1 (30.1)	18.7 (18.7)
Model 2	13.9 (31.6)	25.0 (26.0)	12.8 (29.0)	4.4 (14.9)	13.2 (43.3)	3.0 (21.7)
Model 3	11.0 (42.6)	1.9 (27.9)	11.7 (40.7)	1.8 (16.7)	8.7 (52.0)	1.2 (22.9)
Model 4	8.5 (51.1)	28.6 (56.5)	10.2 (50.9)	8.8 (25.5)	5.7 (57.7)	1.2 (24.1)
Model 5	8.2 (59.3)	3.8 (60.3)	10.1 (61.0)	31.6 (57.1)	4.4 (62.1)	0.6 (24.7)
Model 6	6.9 (66.2)	4.8 (65.1)	10.1 (71.1)	3.5 (60.6)	4.1 (66.2)	20.5 (45.2)
Model 7	6.6 (72.8)	1.9 (67.0)	6.1 (77.2)	8.8 (69.4)	4.1 (70.3)	0.6 (45.8)
Model 8	4.9 (77.7)	4.8 (71.8)	5.6 (82.8)	0.8 (70.2)	3.8 (74.1)	1.2 (47.0)
Model 9	4.4 (82.1)	1.0 (72.8)	4.1 (86.9)	1.7 ((71.9)	3.5 (77.6)	0.6 (47.6)
Model 10	3.9 (86.0)	3.8 (76.6)	1.8 (88.7)	1.7 (73.6)	3.4 (81.0)	6.6 (54.2)

Table 1: Top 10 selling items according to scanner data, and associated percentage. of RPI quotes September 1999 (cumulative percentage in brackets)

	Can	neras	Dishw	ashers	Washing Machines		
Model	Percentage	Percentage	Percentage	Percentage	Percentage	Percentage	
	of scanner	of RPI	of scanner	of RPI	of scanner	of RPI	
	prices	quotes	prices	quotes	prices	quotes	
Model 1	28.4 (28.4)	38.4 (38.4)	17.2 (17.2)	2.2 (2.2)	12.0 (12.0)	6.5 (6.5)	
Model 2	13.6 (42.0)	1.2 (39.6)	17.1 (34.3)	16.3 (18.5)	11.2 (23.2)	20.3 (26.8)	
Model 3	11.9 (53.9)	12.8 (52.4)	9.4 (43.7)	11.9 (30.4)	11.2 (34.4)	2.3 (29.1)	
Model 4	7.6 (61.5)	3.5 (55.9)	7.8 (51.5)	5.9 (36.3)	9.8 (44.2)	5.8 (34.9)	
Model 5	6.7 (68.2)	1.2 (57.1)	7.3 (58.8)	6.7 (43.0)	6.9 (51.1)	1.4 (36.3)	
Model 6	5.6 (73.8)	2.3 (59.4)	5.8 (64.6)	0.7 (43.7)	5.1 (56.2)	4.3 (40.6)	
Model 7	4.4 (78.2)	15.1 (74.5)	5.1 (69.7)	23.0 (66.7)	5.1 (61.3)	2.9 (43.5)	
Model 8	4.3 (82.5)	3.5 (78.0)	5.1 (74.8)	0.7 (67.4)	4.4 (65.7)	1.4 (44.9)	
Model 9	4.0 (86.5)	1.2 (79.2)	4.8 (79.6)	3.0 (70.4)	4.2 (69.9)	1.4 (46.3)	
Model 10	3.4 (89.9)	1.2 (80.4)	4.1 83.7)	0.7 (71.1)	4.1 (74.0)	4.3 (50.6)	

25. It should be noted that the RPI sample for September represents the sample produced from the combined effect of the original sample selection (in theory up to five years old), the annual update of the basket (in this instance new price quotes introduced in January 1999 when a quarter of outlets was replenished) and forced replacements since January as old models disappear from the shelves.

26. The results show some very interesting patterns. In general collectors tended to choose items that were good sellers, though frequently they over collected from models that were only mildly popular. Some of the most obvious examples of discrepancies were within dishwashers. Here the top selling model, which accounted for around one fifth of sales, was represented by just 2 per cent of quotes, and the seventh most popular, which only accounted for 4 per cent of sales was represented by over 20 per cent of quotes. This pattern was repeated in other items.

27. Even if we investigate a cumulative distribution, problems remain evident. In all cases the proportion of RPI quotes that represent the top 10 selling models are significantly lower than their sales figures. In the case of dishwashers the top ten models which account for 74.0% of sales according to scanner data are represented by just 50.6% of price quotes in the RPI sample. Over the three months studied these results are fairly stable, though with enough variations to suggest some deterioration in the sample over the period.

28. The reasons for these apparent anomalies, which are not obvious, are investigated later on in the paper with a more detailed in depth analysis. That said it is not necessarily solely related to deficiencies in the RPI data. For example, in September there is a particular a model of washing machine that attracts almost 10 per cent of RPI quotes, while scanner data indicates that no sales of this particular model took place. As it is difficult to believe that collectors are gathering the price of a machine that doesn't sell at all in a particular month one can speculate whether sales of the machine are taking place in a particular market segment not covered by scanner data. Unfortunately we have been unable to follow this line of thought through due to a lack of information on the actual outlets covered by scanner data.

Interpretation

29. Interpretation of the results clearly depends as much on the quality and coverage of the scanner data as on the representativity of the RPI sample. However, they do seem to indicate that the pricing of items can apparently be skewed towards products and varieties which scanner data indicate have relatively small sales, despite the instruction to the price collector to chose a product variety that is representative of the sales of that item in that particular shop. Conversely there is the non-selection of some big selling items. Possible causes include:

- The fixed basket approach where products and varieties as well as items are reviewed at most on an annual basis - leads to the sample becoming increasingly unrepresentative as the "fixed" selection of goods in the basket ages over the samples life. This is not surprising but does raise the issue of whether, for certain items where models change very quickly, updating of the basket should be more frequent than every year. Certainly it suggests that replacements should be introduced before the volume of sales contract to the point where very few purchases are made or the models disappear;
- Weaknesses in the approach where a "similar" product or variety is chosen when a replacement is forced on the price collector because an item becomes obsolete and is no longer found in the shop. This approach can contribute to the ageing of the sample but has the advantage of reducing reliance on quality adjustment procedures. It emphasises the need for an integrated approach to representativity and quality adjustment;
- Adequate product and variety selection undermined by unrepresentativeness in outlet selection. This is considered the least likely cause given the sampling regime used, although it is instructive to note that scanner data shows a large variation between outlet types in unit values and monthly changes in unit values. Thus a relatively small imbalance in outlet sample selection could have a disproportionate impact on the reliability of the measured inflation. (See section VII).

30. The extent to which these findings are a cause for concern depends, at least in part, on whether there is a noticeable impact on the published index and the measured rate of inflation. The second stage of the research designed to test whether this is the case is reported in the next section.

VI. Average unit prices and price changes

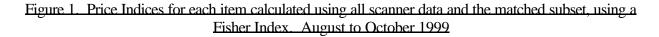
31. This part of the investigation involved observing, for specific product varieties, the extent to which the price levels and changes differ between those derived from data collected by price collectors in the field and those shown by scanner data. In order to do this, data for specific models of each product in the scanner data had to be carefully matched with data for the same models in the RPI data. This work involved considerable resources as detailed data had to be extracted from the computer files storing archived RPI data and a series of reconciliation and validity checks carried out before the data could be used. It was for this reason that the exercise was limited to the three months from August to October 1999.

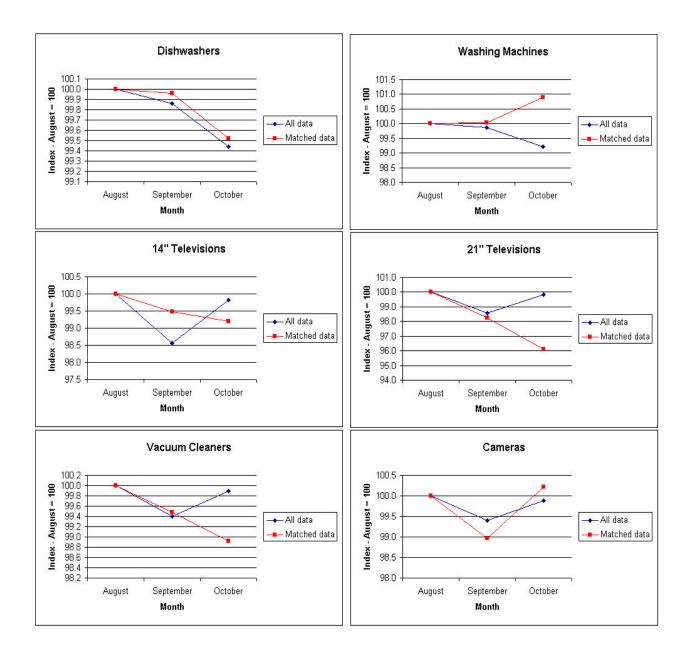
Practical limitations of the matching process and the degree of success achieved

32. It should be noted that problems remained unresolved despite the checking processes described above. These mainly arose from price collectors' descriptions being inadequate for the process of matching (although generally adequate for the identification of product varieties in shops). For instance, a maker's name and a select number of attributes may be all that is required to identify a product variety in a shop but the model number, which in many cases will not be listed by the price collector, will be required to unambiguously matched the product variety with one shown on the scanner list.

Price levels

33. Table 2 gives an overview of the success of the matching process. It should be noted that the degree of successful matching varied between the five items selected. The process was most successful for dishwashers, washing machines and vacuum cleaners where over 70% of RPI observations (representing about 50% of RPI product varieties) were successfully matched to scanner data. It was most problematical for cameras where only about a half of RPI quotes (representing about a third of RPI product varieties) were matched. These differences could, clearly, have an influence on the conclusions of the research. In particular, differences between the price levels and price changes for the matched sample and the full RPI dataset could cause biases if the match sample was selected in such a way as to be unrepresentative.


- 34. A number of observations can be made:
- Significant differences can exist between the mean **average price level** for a product variety based on the full set of RPI quotes and the subset successfully matched with scanner data. This was most marked for television sets and washing machines;
- In general there is no pattern across the items as to whether the matched sample had a higher or lower mean price than that for all RPI quotes. However, within an item the direction of the difference remained the same over time, with the sole exception of cameras where the differences are small. This may suggest that a non-random effect is present within items, though this is difficult to test with a weighted mean, and a serially correlated sample;
- Differences occur between **average price changes** shown by the full scanner dataset and those shown by the matched set. This was explored by calculating Laspeyres¹, Paasche¹ and Fisher¹ indices for the full RPI set of price data and for the sub-sample representing matched observations. The results for a Fisher index indicate that the price changes from the sub-sample followed similar, but not necessarily identical patterns, to those in the full scanner data (see Fig. 1).


35. These results clearly show that there are real differences between the full and the matched datasets, most specifically in relation to the price of the item. It is difficult to be certain of the reasons for these differences as testing them from the RPI system is problematical. However, it is possible that data from some store types are better specified and this, combined with the differences in price described in later analyses, causes the effect. However, whatever the cause,

there is clearly a real effect and this needs to be borne in mind whenever the results of the comparisons are analysed.

		August		S	eptemb	oer	October		
	% matched	Mean of	Mean of matched sample		Mean	Mean of matched sample	% matched	Mean of	Mean of matched sample
14" Televisions	39	135.5	146.7	46	130.8	148.9	46	129.2	150.7
21" Televisions	48	249.7	291.3	56	246.5	283.8	58	240.1	268.4
Vacuum Cleaners	76	129.5	129.1	77	130.0	130.9	78	128.9	130.2
Cameras	55	55.4	56.9	50	56.5	59.9	53	57.3	56.4
Dishwashers	71	339.5	332.3	73	337.9	330.8	69	333.3	328.5
Washing Machines	81	345.3	349.7	75	354.0	323.2	76	348.9	317.8

Table 2: Percentage coverage of matched data	and comparison between	means of prices for the whole
0 0	1	1
RPI and the matched sample.	August to October 1999	(means in £s)
- I	0	

The results

36. Despite the limitations to the exercise arising from problems of matching, the results are nevertheless instructive. The first observation to be made is that, in all cases, the average price produced by RPI quotes is higher than the corresponding unit value produced by scanner data. That this is the case should not come as a surprise, and arises from the different bases underlying the data collection. The RPI sample collects data for a fixed basket of goods, taking no account of product or outlet substitution. In addition it is restrictive in the types of discount that are

allowed to influence prices, in particular end-of-line or clearance sales are specifically excluded. In contrast scanner data directly estimates the prices actually paid by consumers for their goods by measuring the value and volume of goods bought. Because of this it tracks consumers' efforts to get the lowest prices for goods, and consequently includes the effects of substitution in its estimates. This will always produce a lower average price. In addition all discounts are included, however they arise, a factor that also reduces the average price implied by the unit cost.

37. Looking at the data in more detail it was found that not only were the average prices recorded by RPI collectors for each product generally higher than the average unit value from scanner data, but more often than not the average price recorded by price collectors for a particular product variety was also higher than the corresponding unit values from scanner data. However, a comparative analysis of absolute and percentage absolute deviations between RPI quotes and scanner data unit values (Table 3) indicates that a large proportion of this difference is caused by a relatively small number of high or low prices or unit values appearing in the comparison. Thus the deviations of the medians are in all cases significantly lower than the corresponding deviations of the arithmetic means. Some of this difference may also be accounted for by scanner data unit values reflecting quantities sold.

	Absolute D	eviation (£s)	Percentage Absolute Deviation		
	Mean	Median	Mean	Median	
Dishwashers	29.4	21.1	9.99	6.35	
Washing machines	34.8	21.3	10.45	7.58	
Vacuum Cleaners	13.3	7.7	9.71	6.07	
14" Televisions	14.9	9.7	13.95	7.84	
21" Televisions	30.0	16.6	9.60	6.05	
Cameras	9.2	5.9	16.10	10.36	

Table 3. Absolute and percentage absolute deviations between averages for RPI quotes and scanner
data unit values using both mean and median differences:
Average of August to October 1999

38. The coefficients of variation given in Table 4 provide a useful overview, as they discount the impact of the different levels of the mean for the different products. Dishwashers have the highest coefficient of variation for the difference between average price and average unit value when expressed as a percentage of the average unit value. Vacuum cleaners and 21" television sets have high coefficients of variation both for the price difference expressed in monetary and the difference expressed in percentage terms. Clearly, there is a case for enlarged samples where, as in the above cases, means are particularly vulnerable to outliers.

	Coefficients of variation					
	Monetary Absolute Deviations	Percentage Absolute Deviations				
Dishwashers	0.92	1.32				
Washing machines	1.09	0.99				
Vacuum Cleaners	1.41	1.19				
14" Televisions	1.07	1.12				
21" Televisions	1.23	1.23				
Cameras	1.04	1.04				

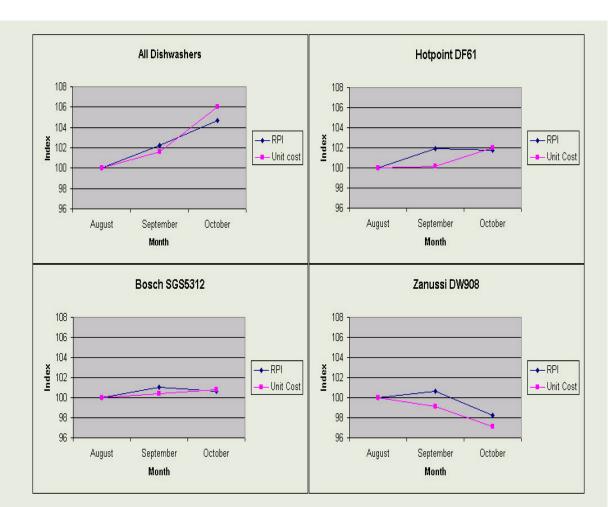
Table 4: Coefficients of variation

Price changes

39. A corresponding analysis of monthly price changes (Table 5) indicates that there is no evidence of recorded price **changes** consistently exceeding unit value **changes** or vice versa except for:

- Washing machines and vacuum cleaners where price falls recorded by scanner data are consistently higher than those seen in the RPI sample;
- Cameras, where, RPI data shows the same pattern of price movements, though the movements are more extreme.

Table 5: Index (August = 100) and month to 1		orded RPL quotes and
		1 · · · · ·
matched scanner data	August to October 1999	


	A	ugust	Ser	otember	0	ctober
	Index	Change on Previous month	Index	Change on Previous month	Index	Change on Previous month
Dishwashers						
RPI Quotes	100	-	102.2	+2.2%	104.7	+2.5%
Scanner data	100	-	101.6	+1.6%	106.0	+4.4%
Washing Machines						
RPI Quotes	100	-	98.4	-1.6%	97.0	-1.4%
Scanner data	100	-	96.6	-3.4%	98.3	-1.7%
14" Televisions						
RPI Quotes	100	-	99.9	-0.1%	140.6	+4.4%
Scanner data	100	-	100.5	+0.5%	101.2	+0.6%
21" Televisions						
RPI Quotes	100	-	93.5	-6.5%	91.5	-2.1%
Scanner data	100	-	94.5	-5.5%	99.2	+5.0%
Vacuum Cleaners						
RPI Quotes	100	-	97.1	-2.9%	94.3	-2.9%
Scanner data	100	-	96.6	-3.4%	92.5	-4.3%
Cameras						
RPI Quotes	100	-	109.8	+9.8%	101.5	-7.6%
Scanner data	100	-	105.5	+5.5%	100.8	-4.5%

40. In some instances, the divergences that occur in price and unit value trends may be due to the small number of price observations in the RPI for the particular model under investigation - in such circumstances price can fluctuate wildly from month to month with the introduction of sale prices and special offers. This should not necessarily be a cause for concern as the RPI is not designed to measure price changes of individual product varieties. However, in other instances the difference is difficult to explain. One reason may be differences in the mix of outlets and in particular the fact that scanner data will pick up outlet substitution, i.e. the resulting changes in average prices paid as customers seek the cheapest. This problem of lack of homogeneity was referred to earlier and can potentially have a significant impact because of large observable variations in price levels and price trends between different outlet types. This can be seen from the analysis of unit values from scanner data given in Table 6.

	Unit Value (£s)			Percentage Change	Sale	es (Percent))
	August	September	October	August to September	August	September	October
Bosch SGS5312				-			
Multiple	370.1	374.9	379.1	2.5%	707 (31.5%)	853 (34.4%)	681 (35.7%)
Mass	364.0	364.8	363.1	-0.3%	1195	1288	944
Merchandiser					(53.3%)	(51.9%)	(49.5%)
Independent	386.5	382.3	386.0	-0.1%	341 (15.2%)	342	281
-						(13.8%)	(14.7%)
Catalogue	-	-	-	-	0	0	0
					(0%)	(0%)	(0%)
All Stores	369.2	370.8	372.2	0.8%	2243	2483	1906
Hotpoint DF61							
Multiple	309.2	310.7	314.6	1.7%	1190	2361	1756
-					(35.9%)	(54.4%)	(53.5%)
Mass	288.1	296.4	307.8	6.8%	364 (11.0%)	458	310
Merchandiser						(10.6%)	(9.4%)
Independent	326.9	328.7	332.9	1.8%	1756	1513	1211
					(52.9%)	(34.9%)	(36.9%)
Catalogue	400.0	400.0	346.7	-1.2%	6 (0.2%)	5	6
						(0.1%)	(0.2%)
All Stores	315.0	315.6	321.2	1.4%	3316	4337	3283
Zanussi DW908	258.2	261.5	242.2	-6.2%	740 (49.3%)		780
Multiple						(54.0%)	(51.5%)
Mass	264.6	260.6	263.4	-0.5%	236 (15.7%)		210
Merchandiser						(22.0%)	(13.9%)
Independent	282.1	275.5	286.8	1.7%	463 (30.9%)		476
						(20.3%)	(31.4%)
Catalogue	313.4	307.9	309.6	-1.2%	61 (4.1%)	48	49
						(3.7%)	(3.2%)
All Stores	268.2	265.9	260.6	-2.8%	1500	1305	1515

A detailed examination of dishwasher product varieties

41. To understand further why these differences occur requires a detailed examination of each individual product and product variety. Figure 2 shows a comparison between an index for all dishwashers, and those produced for individual models within that group. While, as a whole, dishwashers show no systematic difference in price movements between RPI and scanner data and changes are relatively close, some interesting differences can be seen for individual models.

Figure 2: Price changes between August 1999 and October 1999 for selected brands of dishwasher

Bosch SGS5312

This dishwasher showed the least difference between price changes from RPI quotes, and changes to unit costs. The reasons for this can be seen from the analysis of shop type prices shown in Table 6. In this case prices, and price changes, for the various store type are similar, with all changes within 1.7% of the mean. These, coupled with there being

only minor changes in the distribution between sales by store type, has produced an item index that is similar for the two sources.

Hotpoint DF61

In this case the index in October is very similar in both the RPI data and scanner data cases. However, the index in September is markedly different. Part of the reason for this can also be found in the store analysis given in Table 6. Between August and September there is a marked move away from purchases from the more expensive independent stores, towards the cheaper multiples, associated with an overall increase in volume. This has, as a consequence, depressed the index for September. However, there is another factor at work as the recovery of the index in October is not accompanied by a shift back of the sales distribution. Part of this will, undoubtedly, be related to the differential increases in prices observed across the groups, though perhaps not all.

Zanussi DW908

For this dishwasher we see that the index for scanner data, and that for RPI data, diverge between August and September, and though there is a slight narrowing of the gap between September and October, they remain different. Again the initial difference is, at least partly, due to a move away from sales in expensive stores towards sales in less expensive ones. However, in this case, the distributions return almost to their original levels, without a resultant return of the scanner data index back to the level of the RPI index. It is also clear that this is not about differential price changes in the shops, as the shops to which consumers were returning had a higher price rise than the other types. What has caused this difference is unclear, though it is possible that some of the movement may have been due to special offers not captured in the scanner data. We will be investigating these differences as part of the ongoing work.

42. It is clear from this work, that the selection of outlets is important in ensuring that the RPI produces a representative set of prices. While we are confident that the current system works well it is essential that we are on our guard against changes in sales amongst retailers, particularly over the longer term. Shorter term, outlet substitution, is harder to deal with and is strictly outside the scope of the current RPI. However, we do need to be aware of these changes if in order to better interpret movements in the RPI.

VII. The issue of implicit weights and aggregation formulae

43. The calculation of indices for those products which have been the focus of this paper uses the average of relatives formula¹. Explicit weighting is not used in this calculation but the implicit assumption for the average of relatives is that all quotes are equally important, i.e. they are given equal weight within the elementary aggregate. This is clearly only truly accurate if the mix of quotes taken is representative of sales of brands and models for each item. An alternative approach would be to use the explicit weights available from the volumes of sales of each model as seen in scanner data. Table 7 compares price indices based on current RPI methodology with

a Laspeyres¹ based weighted average using a combination of RPI price data plus scanner data relating to August for weights.

44. These comparisons show some quite substantial difference, (for example 4.5 percentage points for washing machines in September) but no consistent pattern in either magnitude or direction, and reflect in large part the varying proportions of price quotes by model that exists between RPI and scanner data. Clearly these results show the effect on the indices for these items of the distribution differences highlighted in the earlier parts of the paper. Again, we most be careful in applying these results to the index as a whole given the differences seen between the matched data and the full RPI. Despite this, it is clear that we could get noticeably different results for individual product groups if a different approach to selecting items were taken.

	August	September	October
Dishwashers			
Ratio of Averages	100.0	99.2	97.2
Laspeyres	100.0	100.8	100.4
Washing Machines			
Ratio of Averages	100.0	103.3	99.7
Laspeyres	100.0	98.7	99.7
Vacuum Cleaners			
Ratio of Averages	100.0	102.1	101.6
Laspeyres	100.0	101.4	100.2
14" Televisions			
Ratio of Averages	100.0	100.9	100.4
Laspeyres	100.0	101.4	100.0
21" Televisions			
Ratio of Averages	100.0	100.2	94.6
Laspeyres	100.0	96.9	97.2
Cameras			
Ratio of Averages	100.0	100.7	100.0
Laspeyres	100.0	99.2	97.9

Table 7: Comparison of Indices using un-weighted ratio of averages and a weighted Laspeyres calculation: August to October 1999

VIII. An integrated approach to representativity and quality adjustment

45. Thus far this paper has focussed on the issue of sample representativity and how this can be tested by benchmarking against scanner data. In practice, it is difficult to detach consideration about sample representativity from issues relating to quality adjustment. In particular, the trade-off both in terms of resources and in terms of the technical quality of the index, between infrequent but large quality adjustments and more frequent but smaller quality adjustments:

- Maintaining sample representativity can impose additional burdens in terms of making explicit quality adjustments. For example, updating the basket more frequently for hi-tech goods by introducing "planned" forced replacements

between general updates of the basket will increase the frequency of such adjustment;

- Quality adjustment becomes technically more difficult as the basket gets increasingly unrepresentative. The hedonic variables become less reliable and relevant;
- Some changes in consumer evaluation of quality will not have been captured at the relevant point in time. For instance, where specific characteristics of the old model will have reduced over a period of time to a nominal value;
- The same scanner data source can provide sales information to inform sample selection and characteristics information to perform hedonic regressions for quality adjustment;
- The same hedonic regressions can inform price collectors of the brand and salient characteristics for the selection of a forced replacement as well as provide a basis for explicit quality adjustment.

IX. Practical aspects of using scanner data to improve sampling

46. Following this report the ONS has worked to turn the findings into a practical method to improve price collection for the RPI. The particular route followed has been to look at ways to use the scanner data available to produce a quota sampling scheme, giving price collectors explicit instructions on which models to collect.

47. The methodology developed to produce a quota sample gives each collector a prioritised list of models, from which they select their item. For example a collectors list for washing machines may look like:

Choice 1	BOSCH	WFL2000 FSA AUTO W FL 1000
Choice 2	ZANUSSI	FLA1001 FSB AUTO WASH FL
		1000
Choice 3	HOOVER	AM120 FSA AUTO W. FL 1200
Choice 4	ZANUSSI	FJS1225 FSA AUTO W FL 1200
Choice 5	BOSCH	WFL226/2260 FSA AUTO W. FL
		1100
Choice 6	SERVIS	M3510 FSB AUTO W. FL 1000

48. The collector then goes to the location when updating the basket and looks to see if the first model on the list is available, if so it is it then selected, if it is not the collector moves on to the second model on the list and the process repeated. This continues until one is selected, or the list runs out when a collector chooses their own based on popularity of sales within that shop.

49. The quota samples are not produced individually, but for price collectors collectively. The first step is to select the 1st choice model for each collector. This is done at random, using a

probability proportional to size method. The size measure used is the proportion of total sales that this model represents within the market defined by the scanner data. The second stage is to choose the next choice for the list. This is done in a similar way, however for each collector the model selected in the first round is excluded, and the probabilities adjusted for the exclusion. This is repeated until a list of six models is selected for each collector.

50. Whether this method actually works is being tested in two ways. The first is to test the practicality of the method using a pilot study using 20 price collectors in the UK, and producing quota samples for 5 items: washing machines, dishwashers, cameras, televisions and vacuum cleaners. The second is to simulate retail conditions and estimate their effect on the final distribution on models, to see to what extent the obtained distributions match the ideal distribution defined by sales in scanner data.

Pilot testing

51. Price collectors have been asked to test the procedures produced for introducing quota samples into the RPI collection for selected items. Collections were undertaken during March, April and May 2001, with collectors commenting on the ease of the method, and its impact on retailers.

52. The reception was generally favourable, with most collectors preferring to be directed towards specific models rather than being expected to approach shop managers or rely on their own knowledge to choose the most popular models.

53. There were, however, concerns which mainly surrounded the difficulties that are encountered in either specialist brand dealers (such as the Sony shop) or exclusive deals with Department stores. Part of the further work to be undertaken will be an analysis of these problems: how widespread they are, their effect on the sample and possible solutions. These results will influence any decisions on implementation into the live RPI.

Simulations

54. Once initial distributions were produced the stability of the method was tested using simulations depicting different rates of difficulty for collectors to find the given goods within the shops. In each case a total of forty simulations were performed to ensure that a single unexpected result would not lead to false conclusions. Four different rates of missing quotes were tested, 5%, 10%, 20% and 50%. Hybrid distributions were then produced, using 2nd, 3rd, 4th etc. choices as necessary to fill in for missing values throughout the model.

55. The resultant distributions were tested using a chi-square test against the ideal distribution used to generate the original 1st choice distribution.

56. The results were unsurprising. In all cases the original distributions were shown to be not significantly different from the ideal distribution. This essentially validates our primary selection method.

57. We also found that as we move away from the pure, first round, distributions that the rate of failure increases. There, however is a very small number of failed significance tests for those areas were the rate of failure to find models is small (as you would expect as replacement rates are low). The biggest effect on the difference between the achieved sample, and the expected sample comes from the level of the failure to find models. As this rate goes up we find a consistent rise in the difference, though there are still distributions with 50% failure rates that produce acceptable distributions when compared to the ideal.

58. These results, therefore, suggest that the method employed provides a good theoretical framework for a practical quota sampling method. Furthermore the distributions fail in a predictable way, tending towards the original distributions produced when collectors were free to choose models themselves. These results are reassuring, suggesting that the least favourable outcome would be the status quo. A further analysis is underway examining the failure rates from the pilot exercise to determine what the actual distributions are likely to look like in a live situation.

X. Conclusions and implications for sampling, the collection of price data and quality adjustment

59. The research described in this paper has raised a number of issues relating to current practices used in the sampling and collection of prices for the UK Retail Prices Index. It also points to a number of ways in which scanner data might be utilised to further ensure representativity of item and product selection in traditional forms of price collection, where prices are observed in shops. The research does not necessarily point to current sampling procedures leading to bias but it does invite the prospect of additional controls and procedures to keep in check the potential for bias.

60. The starting point in any consideration of the practical implication is the proposition that, in order to reflect the market, representative product varieties should account not only for substantial proportions of the sales for the specified product variety, but also, on aggregate, exhibit similar price changes. We can then make the following practical observations, in addition to investigating quota samples:

- A "representative" basket may deteriorate in its applicability to the market during its life-cycle, even if it is updated annually. This may happen, for instance, in high technology goods where the turnover of models is high. In this case scanner data, in cases where coverage is good, can be used to monitor changes in representativity over time and indicate if, and when, the basket needs to be updated more frequently. The update could be performed using planned "forced" replacements, to avoid the problems of potential bias associated with frequent chain linking. These updates could be trigged either by an algorithm based on scanner data, or more practically at fixed intervals;
- Where forced replacements continue to be necessary, due to product varieties disappearing from shops, scanner data may be helpful in choosing replacements. This would be possible by, for example, identifying replacements that are the

closest in terms of characteristics to the disappearing model or, alternatively, by using hedonic regression to identify the most important characteristics featuring in consumers' purchasing decisions;

- The same hedonic regressions can be utilised for explicit quality adjustment, both for traditional replacements, and for the planned "forced" replacements;
- Scanner data by store type indicates that special care needs to be taken to ensure a proper spread of outlets in the RPI sample and that scanner data may be used for post-stratification where there is reason to believe that the sample achieved under current RPI sampling practices is not totally self-weighting.

61. The Office for National Statistics will be looking at these issues in more detail as part of its longer-term methodological research programme.

Appendix 1: Formulae of elementary aggregates and index formulations

Laspeyres =
$$\frac{P_{t}Q_{0}}{P_{0}Q_{0}}$$

 $\begin{array}{ll} \mbox{Where} \ P_t = \mbox{Price at time } t \\ Q_t = \mbox{Quantity sold at time } t \\ \ Time \ 0 = \mbox{the base month} \end{array}$

Paasche =
$$\frac{P_t Q_t}{P_0 Q_t}$$

 $\begin{array}{ll} \mbox{Where} \ P_t = \mbox{Price at time } t \\ Q_t = \mbox{Quantity sold at time } t \\ \ Time \ 0 = \mbox{the base month} \end{array}$

Fisher =
$$\sqrt{\frac{\sum P_{t}Q_{0}\sum P_{t}Q_{t}}{\sum P_{0}Q_{0}\sum P_{0}Q_{t}}}$$

 $\begin{array}{ll} \mbox{Where} & P_t = \mbox{Price at time } t \\ & Q_t = \mbox{Quantity sold at time } t \\ & \mbox{Time } 0 = \mbox{the base month} \end{array}$

Average of Relatives =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{P_i^t}{P_i^0}$$

Where $P_i^t = Price$ of item I at time t Time 0 = base month

Ratio of Averages =
$$\frac{\frac{1}{n}\sum_{i=1}^{n} P_{i}^{t}}{\frac{1}{n}\sum_{i=1}^{n} P_{i}^{0}}$$

Where P_i^t = Price of item I at time t Time 0 = base month

NOTE

¹ See Appendix.

REFERENCES

Bradley, Cook, Leaver & Moulton [1997] An overview of Research on Potential Uses of Scanner Data in the US CPI.

Geneva277
